Practice with Integrals

Work out the following antiderivatives. There is a "hint sheet" attached. For the solutions, see the Maple file online.

1. $\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x$
2. $\int \mathrm{e}^{2 \theta} \sin (3 \theta) d \theta$
3. $\int \frac{1}{y(2-y)} d y$
4. $\int t^{2} \cos (3 t) d t$
5. $\int x^{3} \mathrm{e}^{x^{2}} d x$
6. $\int x 5^{x} d x$
7. $\int \frac{x-1}{x^{2}+1} d x$
8. $\int \frac{1}{x \sqrt{x+1}} d x$
9. $\int y \sinh (y) d y$
10. $\int \frac{d x}{x^{4}-x^{2}}$
11. $\int \frac{t^{2}}{t+4} d t$
12. $\int \cos (\ln (x)) d x$
13. $\int \frac{x-1}{x+4} d x$
14. $\int \tan ^{-1}(x) d x$

Hint Sheet: Integration Practice

The Maple command for each integral is given so that you can check your answer.

1. $\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x$

Use Partial Fraction Decomposition,

$$
\frac{2 x^{2}-x+4}{x^{3}+4 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

Once you've found A, B, C, break the integral up:

$$
A \int \frac{1}{x} d x+B \int \frac{x}{x^{2}+4} d x+C \int \frac{1}{x^{2}+4} d x
$$

Use $u, d u$ substitution for the second integral, and do some algebra on the last integral so you can use the inverse tangent as the antiderivative.
2. $\int \mathrm{e}^{2 \theta} \sin (3 \theta) d \theta$

Integration by parts twice so that:

$$
\int \mathrm{e}^{2 \theta} \sin (3 \theta) d \theta=\mathrm{e}^{2 \theta}(\ldots)-\frac{4}{9} \int \mathrm{e}^{2 \theta} \sin (3 \theta) d \theta
$$

Now solve for $\int \mathrm{e}^{2 \theta} \sin (3 \theta) d \theta$.
3. $\int \frac{1}{y(2-y)} d y$

Use partial fractions:

$$
\frac{1}{y(2-y)}=\frac{A}{y}+\frac{B}{2-y}
$$

then integrate. You might write it as $A / y-B /(y-2)$ to make it easier to integrate later.
4. $\int t^{2} \cos (3 t) d t$

Integration by parts; put t^{2} in the middle column of the table so that the third derivative is zero.
5. $\int x^{3} \mathrm{e}^{x^{2}} d x$

Do a $u, d u$ substitution first, with $u=x^{2}, d u=2 x d x$:

$$
\int x^{3} \mathrm{e}^{x^{2}} d x=\int x^{2} \mathrm{e}^{x^{2}} x \cdot d x=\frac{1}{2} \int u \mathrm{e}^{u} d u
$$

Now do integration by parts on this.
6. $\int x 5^{x} d x$

Do integration by parts, where the antiderivative of 5^{x} is $\frac{1}{\ln (5)} 5^{x}$ (so put x in the middle column).
7. $\int \frac{x-1}{x^{2}+1} d x$

We can write this as:

$$
\int \frac{x}{x^{2}+1} d x-\int \frac{1}{x^{2}+1} d x
$$

Use $u, d u$ substitution for the first integral, the second integral is already in a nice form.
8. $\int \frac{1}{x \sqrt{x+1}} d x$

We will do a $u, d u$ substitution first:

$$
u=\sqrt{x+1} \quad d u=\frac{1}{2} \cdot \frac{1}{\sqrt{x+1}} d x \quad \text { and } \quad u^{2}-1=x
$$

Making these substitutions:

$$
\int \frac{1}{x \sqrt{x+1}} d x=2 \int \frac{1}{u^{2}-1} d u
$$

Factor the denominator and use partial fractions to finish up.
9. $\int y \sinh (y) d y$

Use integration by parts, where the antiderivative of $\sinh (y)$ is $\cosh (y)$, and the antiderivative of $\cosh (y)$ is $\sinh (y)$ (so put y in the middle column).
10. $\int \frac{d x}{x^{4}-x^{2}}$

Factor the denominator, and use integration by parts. The x^{2} term can be thought of as a doubled up linear factor, so we would use:

$$
\frac{A}{x}+\frac{B}{x^{2}}
$$

or as a single quadratic factor, in which case we would use:

$$
\frac{A x+B}{x^{2}}
$$

(These are equivalent). In any event,

$$
\frac{1}{x^{2}\left(x^{2}-1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}+\frac{D}{x+1}
$$

11. $\int \frac{t^{2}}{t+4} d t$

The degree of the numerator is greater than the degree of the denominator. Use long division to get:

$$
\frac{t^{2}}{t+4}=t^{2}-4+\frac{16}{t+4}
$$

12. $\int \cos (\ln (x)) d x$

Use a $u, d u$ substitution, where $u=\ln (x)$, or $\mathrm{e}^{u}=x$. Therefore, $\mathrm{e}^{u} d u=$ $d x$ and making our substitutions:

$$
\int \cos (\ln (x)) d x=\int \mathrm{e}^{u} \cos (u) d u
$$

We will have to integrate this by parts twice (like problem 2).
13. $\int \frac{x-1}{x+4} d x$

The degree of the numerator is larger than or equal to the degree of the denominator, so perform long division first:

$$
\frac{x-1}{x+4}=1-\frac{5}{x+4}
$$

14. $\int \tan ^{-1}(x) d x$

Use integration by parts, with $u=\tan ^{-1}(x)$ and $d v=1 d x$.

