Practice with Integrals

Work out the following antiderivatives. There is a "hint sheet" attached. For the solutions, see the Maple file online.

1.
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx$$

2.
$$\int e^{2\theta} \sin(3\theta) d\theta$$

3.
$$\int \frac{1}{y(2 - y)} dy$$

4.
$$\int t^2 \cos(3t) dt$$

5.
$$\int x^3 e^{x^2} dx$$

6.
$$\int x 5^x dx$$

7.
$$\int \frac{x - 1}{x^2 + 1} dx$$

8.
$$\int \frac{1}{x\sqrt{x + 1}} dx$$

9.
$$\int y \sinh(y) dy$$

10.
$$\int \frac{dx}{x^4 - x^2}$$

11.
$$\int \frac{t^2}{t + 4} dt$$

12.
$$\int \cos(\ln(x)) dx$$

13.
$$\int \frac{x - 1}{x + 4} dx$$

14.
$$\int \tan^{-1}(x) dx$$

Hint Sheet: Integration Practice

The Maple command for each integral is given so that you can check your answer.

1.
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx$$

Use Partial Fraction Decomposition,

$$\frac{2x^2 - x + 4}{x^3 + 4x} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4}$$

Once you've found A, B, C, break the integral up:

$$A \int \frac{1}{x} \, dx + B \int \frac{x}{x^2 + 4} \, dx + C \int \frac{1}{x^2 + 4} \, dx$$

Use u, du substitution for the second integral, and do some algebra on the last integral so you can use the inverse tangent as the antiderivative.

2. $\int e^{2\theta} \sin(3\theta) \, d\theta$

Integration by parts twice so that:

$$\int e^{2\theta} \sin(3\theta) \, d\theta = e^{2\theta} \, (\dots) - \frac{4}{9} \int e^{2\theta} \sin(3\theta) \, d\theta$$

Now solve for $\int e^{2\theta} \sin(3\theta) d\theta$.

3. $\int \frac{1}{y(2-y)} \, dy$ Use partial fractions:

$$\frac{1}{y(2-y)} = \frac{A}{y} + \frac{B}{2-y}$$

then integrate. You might write it as A/y - B/(y-2) to make it easier to integrate later.

4. $\int t^2 \cos(3t) \, dt$

Integration by parts; put t^2 in the middle column of the table so that the third derivative is zero.

5.
$$\int x^3 e^{x^2} dx$$

.

Do a u, du substitution first, with $u = x^2, du = 2x dx$:

$$\int x^3 e^{x^2} dx = \int x^2 e^{x^2} x \cdot dx = \frac{1}{2} \int u e^u du$$

Now do integration by parts on this.

$6. \int x 5^x \, dx$

Do integration by parts, where the antiderivative of 5^x is $\frac{1}{\ln(5)}5^x$ (so put x in the middle column).

$$7. \quad \int \frac{x-1}{x^2+1} \, dx$$

We can write this as:

$$\int \frac{x}{x^2 + 1} \, dx - \int \frac{1}{x^2 + 1} \, dx$$

Use u, du substitution for the first integral, the second integral is already in a nice form.

8.
$$\int \frac{1}{x\sqrt{x+1}} \, dx$$

We will do a u, du substitution first:

$$u = \sqrt{x+1}$$
 $du = \frac{1}{2} \cdot \frac{1}{\sqrt{x+1}} dx$ and $u^2 - 1 = x$

Making these substitutions:

$$\int \frac{1}{x\sqrt{x+1}} \, dx = 2 \int \frac{1}{u^2 - 1} \, du$$

Factor the denominator and use partial fractions to finish up.

9. $\int y \sinh(y) \, dy$

Use integration by parts, where the antiderivative of $\sinh(y)$ is $\cosh(y)$, and the antiderivative of $\cosh(y)$ is $\sinh(y)$ (so put y in the middle column).

 $10. \ \int \frac{dx}{x^4 - x^2}$

Factor the denominator, and use integration by parts. The x^2 term can be thought of as a doubled up linear factor, so we would use:

$$\frac{A}{x} + \frac{B}{x^2}$$

or as a single quadratic factor, in which case we would use:

$$\frac{Ax+B}{x^2}$$

(These are equivalent). In any event,

$$\frac{1}{x^2(x^2-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} + \frac{D}{x+1}$$

 $11. \ \int \frac{t^2}{t+4} \, dt$

The degree of the numerator is greater than the degree of the denominator. Use long division to get:

$$\frac{t^2}{t+4} = t^2 - 4 + \frac{16}{t+4}$$

12. $\int \cos(\ln(x)) \, dx$

Use a u, du substitution, where $u = \ln(x)$, or $e^u = x$. Therefore, $e^u du = dx$ and making our substitutions:

$$\int \cos(\ln(x)) \, dx = \int e^u \cos(u) \, du$$

We will have to integrate this by parts twice (like problem 2).

$$13. \quad \int \frac{x-1}{x+4} \, dx$$

The degree of the numerator is larger than or equal to the degree of the denominator, so perform long division first:

$$\frac{x-1}{x+4} = 1 - \frac{5}{x+4}$$

14.
$$\int \tan^{-1}(x) \, dx$$

Use integration by parts, with $u = \tan^{-1}(x)$ and dv = 1 dx.