Chapter 3, Computing Solutions
From the theory, we know that every initial value problem:
ay” +by' +ey=g(t)  ylto) =v0 ¥ (to) =0
has a solution that can be expressed as:
y(t) = ciyr + caya + Yy

where y1,y2 form a fundamental set of solutions to the homogeneous equation, and y,(t) is the (particular)
solution to the nonhomogeneous equation.
We first consider the homogeneous ODE:

Solving ay” + by +cy =0

Form the associated characteristic equation (built by using y = e"* as the ansatz):

b+ Vb2 -4
ar’+br+¢=0 = r:TM

so that the solutions depend on the discriminant, b?> — 4ac in the following way (y, refers to the solution of
the homogeneous equation):

e b2 —4ac > 0 = two distinct real roots r1,7;. The general solution is:
yn(t) = cre™t 4 coe™!

If a,b,¢ > 0 (as in the Spring-Mass model) we can further say that 71,7y are negative. We would say
that this system is OVERDAMPED.

e b2 — dac =0 = one real root r = —b/2a. Then the general solution is:
yn(t) = e~ /2 (Cy + Cot)

If a,b,c > 0 (as in the Spring-Mass model), the exponential term has a negative exponent. In this case
(one real root), the system is CRITICALLY DAMPED.

o b2 —4dac < 0 = two complex conjugate solutions, r = A £ 3. Then the solution is:
yn(t) = e (Cy cos(ut) + Cy sin(ut))
If a,b,c > 0, then A < 0. In the case of complex roots, the system is said to the UNDERDAMPED. If
A = 0 (this occurs when there is no damping), we get pure periodic motion, with period 27/ p.
Solving y" + p(t)y’ + q(t)y =0

Given y;(t), we can solve for a second linearly independent solution to the homogeneous equation, ys, by
one of two methods:

e By use of the Wronskian: There are two ways to compute this,
— W(y1,y2) = Ce™ Jrwat (This is from Abel’s Theorem)
= W(y1,92) = Y195 — you

Therefore, these are equal, and yo is the unknown: yyy5 — y2y; = Ce™ Jrwat



%y’— t% =0, with y; = ¢.

Summarized Example: 3" +
Abel’s Theorem: W (y1,ys) = Ce=210() = C/t?

Wronskian: ty) — yo

These should be the same: ty)—y, = t% is a linear first order equation. Solve it and ignore the constant
to get that yo = ¢t~ 2.

e By Variation of Parameters (the method that the text uses in Section 3.5), where ya = ua(t)y1(f). See
Example 3, p. 171 for an example.

Solving for the particular solution.
Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

e Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay” + by’ + cy,
acting on certain classes of functions, returns the same class. In summary, we have Table 3.6.1,
reproduced below:

if g;(¢) is: The ansatz yp, is:
P, (t) t*(ag + art + . .. ant™)
P, (t)e*t t5e*(ag + art + ... + ant™)

P, (t)e* sin(ut) or cos(ut) | £t ((ag + a1t + ... + ant™) sin(ut)
+ (bo + b1t + ... + b,t™) cos(ut))

The ¢° term comes from an analysis of the homogeneous part of the solution. That is, multiply by ¢ or
t2 so that no term of the ansatz is included as a term of the homogeneous solution.

e Variation of Parameters: Given y” + p(t)y’ + q(t)y = g(t), with y1,y2 solutions to the homogeneous
equation, we write the ansatz for the particular solution as:

Yp = ULY1 + U2Y2
From our analysis, we saw that uy,us were required to solve:

iy +upye =0
uyyy +upyy =0

From which we get the formulas for w} and u):

—Y29 / Y19

uy = —22 Uy = —————
! W(y17y2) 2 W(yhyz)



