
Chapter 3, Theory

The goal of the theory was to establish the structure of solutions to the second order DE:

y′′ + p(t)y′ + q(t)y = g(t)

We saw that two functions form a fundamental set of solutions to the homogeneous DE if
they are linearly independent, and we looked at the connection between linear independence
and the Wronskian.

1. Vocabulary: Linear Operator, general solution, fundamental set of solutions, linearly
independent (and linearly dependent).

2. Theorems:

• The Existence and Uniqueness Theorem for y′′ + p(t)y′ + q(t)y = g(t).

• Principle of Superposition.

• Linear Independence and the Wronskian:

– If there is a t0 such that W (f, g)(t0) 6= 0, then f, g are linearly independent
on any interval containing t0.

– If W (f, g) = 0 for all t, we cannot conclude anything about dependence (for
general functions f, g, for example t and |t|).

– If y1, y2 are solutions to y′′ + p(t)y′ + q(t)y = 0, then the Wronskian is either
always zero (y1, y2 are linearly dependent), or never zero (y1, y2 are linearly
independent) on the interval for which the solutions are valid.
This is Abel’s Theorem, which stated that:

W (y1, y2)(t) = Ce−
∫

p(t) dt

This quantity is either always zero (C = 0) or never zero on the interval for
which the solutions are valid.

• The Fundamental Set of Solutions: y′′ + p(t)y′ + q(t)y = 0

We can guarantee that we can always find a fundamental set of solutions. We
did that by appealing to the Existence and Uniqueness Theorem for the following
two initial value problems:

– y1 solves y′′ + p(t)y′ + q(t)y = 0 with y(t0) = 1, y′(t0) = 0

– y2 solves y′′ + p(t)y′ + q(t)y = 0 with y(t0) = 0, y′(t0) = 1

Note that the choice of initial values simply guarantees that

W (y1, y2)(t0) 6= 0

so we could replace these with other combinations of numbers so that the Wron-
skian is not zero at t0.



3. The Structure of Solutions to y′′ + p(t)y′ + q(y)y = g(t), y(t0) = y0, y
′(t0) = v0

Given a fundamental set of solutions to the homogeneous equation, y1, y2, then there
is a solution to the initial value problem, written as:

y(t) = C1y1(t) + C2y2(t) + yp(t)

where yp(t) solves the non-homogeneous equation.

In fact, if we have:

y′′ + p(t)y′ + q(t)y = g1(t) + g2(t) + . . . + gn(t)

we can solve by splitting the problem up into smaller problems:

• y1, y2 form a fundamental set of solutions to the homogeneous equation.

• yp1 solves y′′ + p(t)y′ + q(t)y = g1(t)

• yp2 solves y′′ + p(t)y′ + q(t)y = g2(t)

and so on..

• ypn solves y′′ + p(t)y′ + q(t)y = gn(t)

and the full solution is:

y(t) = C1y1 + C2y2 + yp1 + yp2 + . . . + ypn

Sections 3.1, 3.4, 3.5 give ways of solving a special homogeneous equation (one with constant
coefficients). We also get a method for finding y2, if we are given y1 for the more general
case.
Sections 3.6 and 3.7 are methods for obtaining the particular part of the solution (Method
of Undetermined Coefficients and Variation of Parameters).
Sections 3.8 and 3.9 give a detailed analysis of the solutions using a Spring-Mass system as
the physical model.


