
Complex Numbers

1 Introduction

1.1 Real or Complex?

Definition: The complex number z is defined as:

z = a + bi (1)

where a, b are real numbers and i =
√
−1. (Side note: Engineers typically use j instead of i).

Examples:
5 + 2i, 3−

√
2i, 3, −5i

Real numbers are also complex (by taking b = 0).

1.2 Visualizing Complex Numbers

A complex number is defined by it’s two real numbers. If we have z = a + bi, then:
Definition: The real part of a + bi is a,

Re(z) = Re(a + bi) = a

The imaginary part of a + bi is b,
Im(z) = Im(a + bi) = b

To visualize a complex number, we can plot it on the plane. The horizontal axis is for the real part, and the
vertical axis is for the imaginary part; a + bi is plotted as the point (a, b).

In Figure 1, we can see that it is also possible to represent the point a + bi, or (a, b) in polar form, by
computing its modulus (or size), and angle (or argument):

|z| =
√

a2 + b2 φ = arg(z)

We have to be a bit careful defining φ- Being an angle, it is not uniquely described (0 = 2π = 4π, etc). It is
customary to restrict φ to be in the interval (−π, π].

Figure 1: Graphically representing the complex number z = x + iy, and visualizing its complex conjugate, z̄
.
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1.3 Operations on Complex Numbers

1.3.1 The Conjugate of a Complex Number

If z = a + bi is a complex number, then its conjugate, denoted by z̄ is a− bi. For example,

z = 3 + 5i ⇒ z̄ = 3− 5i z = i ⇒ z̄ = −i z = 3 ⇒ z̄ = 3

Graphically, the conjugate of a complex number is it’s mirror image across the horizontal axis.

1.3.2 Addition/Subtraction, Multiplication/Division

To add (or subtract) two complex numbers, add (or subtract) the real parts and the imaginary parts separately:

(a + bi)± (c + di) = (a + c)± (b + d)i

To multiply, expand it as if you were multiplying polynomials:

(a + bi)(c + di) = ac + adi + bci + bdi2 = (ac− bd) + (ad + bc)i

and simplify using i2 = −1. Note what happens when you multiply a number by its conjugate:

zz̄ = (a + bi)(a− bi) = a2 − abi + abi− b2i2 = a2 + b2 = |z|2

Division by complex numbers z, w: z
w , is defined by translating it to real number division (rationalize the

denominator):
z

w
=

zw̄

ww̄
=

zw̄

|w|2

Example:
1 + 2i

3− 5i
=

(1 + 2i)(3 + 5i)
34

=
−7
34

+
11
34

i

1.4 The Polar Form of Complex Numbers

1.4.1 Euler’s Formula

Any point on the unit circle can be written as (cos(θ), sin(θ)), which corresponds to the complex number
cos(θ) + i sin(θ). It is possible to show the following directly, but we’ll use it as a definition:

Definition (Euler’s Formula): eiθ = cos(θ) + i sin(θ).

1.4.2 Polar Form of a + bi:

The polar form is defined as:

z = reiθ where r = |z| =
√

a2 + b2 θ = arg(z)

To be sure that the polar form is unique, we restrict θ to be in the interval (−π, π]. You might think of arg(z)
as the four-quadrant inverse tangent- That is:

• If (a, b) is in the first or fourth quadrant, then θ = tan−1
(

b
a

)
.

• If a = 0 and b 6= 0, then θ is either π/2 (for b > 0) or −π/2.

• If (a, b) is in the second quadrant, add π: θ = tan−1
(

b
a

)
+ π

• If (a, b) is in the third quadrant, subtract π: θ = tan−1
(

b
a

)
− π

• The argument of zero is not defined.

Best way to remember these: Quickly plot a + bi to see if you need to add or subtract π.
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1.5 Exponentials and Logs

The logarithm of a complex number is easy to compute if the number is in polar form:

ln(a + bi) = ln
(
reiθ

)
= ln(r) + ln

(
eiθ

)
= ln(r) + iθ

The logarithm of zero is left undefined (as in the real case). However, we can now compute the log of a
negative number:

ln(−1) = ln
(
1 · eiπ

)
= iπ or the log of i : ln(i) = ln(1) +

π

2
i =

π

2
i

Note that the usual rules of exponentiation and logarithms still apply.
To exponentiate a number, we convert it to multiplication (a trick we used in Calculus when dealing with

things like xx):
ab = eb ln(a)

Example, 2i = ei ln(2) = cos(ln(2)) + i sin(ln(2))

Example:
√

1 + i = (1 + i)1/2 =
(√

2ei π/4
)1/2

= (21/4)ei π/8

Example: ii = ei ln(i) = ei(iπ/2) = e−π/2

2 Real Polynomials and Complex Numbers

If ax2 + bx + c = 0, then the solutions come from the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

In the past, we only took real roots. Now we can use complex roots. For example, the roots of x2 + 1 = 0 are
x = i and x = −i.

Check:
(x− i)(x + i) = x2 + xi− xi− i2 = x2 + 1

Some facts about polynomials when we allow complex roots:

1. An nth degree polynomial can always be factored into n roots. (Unlike if we only have real roots!) This
is the Fundamental Theorem of Algebra.

2. If a + bi is a root to a real polynomial, then a− bi must also be a root. This is sometimes referred to as
“roots must come in conjugate pairs”.

3 Exercises

1. Suppose the roots to a cubic polynomial are a = 3, b = 1−2i and c = 1+2i. Compute (x−a)(x−b)(x−c).

2. Find the roots to x2 − 2x + 10. Write them in polar form.

3. Show that:
Re(z) =

z + z̄

2
Im(z) =

z − z̄

2i

4. For the following, let z1 = −3 + 2i, z2 = −4i

(a) Compute z1z̄2, z2/z1

(b) Write z1 and z2 in polar form.

5. In each problem, rewrite each of the following in the form a + bi:

(a) e1+2i

(b) e2−3i

(c) eiπ

(d) 21−i

(e) e2−π
2 i

(f) πi
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