Complex Numbers

1 Introduction

1.1 Real or Complex?

Definition: The complex number z is defined as:

z=a+W

where a, b are real numbers and i = /—1. (Side note: Engineers typically use j instead of 7).

Examples:
542, 3—+2i, 3, —bi

Real numbers are also complex (by taking b = 0).

1.2 Visualizing Complex Numbers

A complex number is defined by it’s two real numbers. If we have z = a + bi, then:
Definition: The real part of a + bi is a,

Re(z) =Re(a+ bi) = a

The imaginary part of a 4 bi is b,
Im(z) = Im(a + bi) = b

To visualize a complex number, we can plot it on the plane. The horizontal axis is for the real part, and the

vertical axis is for the imaginary part; a + bi is plotted as the point (a,b).

In Figure 1, we can see that it is also possible to represent the point a + bi, or (a,b) in polar form, by

computing its modulus (or size), and angle (or argument):

2l = Va2 +b* ¢ =arg(z)

We have to be a bit careful defining ¢- Being an angle, it is not uniquely described (0 = 27 = 4x, etc). It is

customary to restrict ¢ to be in the interval (—m,7].
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Figure 1: Graphically representing the complex number z = x + iy, and visualizing its complex conjugate, z



1.3 Operations on Complex Numbers
1.3.1 The Conjugate of a Complex Number

If z = a + bi is a complex number, then its conjugate, denoted by z is a — bi. For example,
z2=3+51=>2z=3-51 Z=1=>2Z=—1 z2=3=>z=3
Graphically, the conjugate of a complex number is it’s mirror image across the horizontal axis.
1.3.2 Addition/Subtraction, Multiplication/Division
To add (or subtract) two complex numbers, add (or subtract) the real parts and the imaginary parts separately:
(a+bi)+(c+di)=(a+c)E(b+d)i
To multiply, expand it as if you were multiplying polynomials:
(a4 bi)(c+ di) = ac + adi + bci + bdi* = (ac — bd) + (ad + be)i
and simplify using i2 = —1. Note what happens when you multiply a number by its conjugate:
22 = (a+ bi)(a — bi) = a® — abi + abi — b*i* = a® +b* = |2|?

Division by complex numbers z,w: Z, is defined by translating it to real number division (rationalize the
denominator):

Example:
14+20  (1+2i)(3+5i) —7 11,
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1.4 The Polar Form of Complex Numbers
1.4.1 Euler’s Formula

Any point on the unit circle can be written as (cos(6),sin(6)), which corresponds to the complex number
cos(#) + isin(f). It is possible to show the following directly, but we’ll use it as a definition:

Definition (Euler’s Formula): e = cos(#) + isin(f).

1.4.2 Polar Form of a + bi:
The polar form is defined as:

0

z=re where 1 =|z| =Va2+b2 0 = arg(z)

To be sure that the polar form is unique, we restrict 6 to be in the interval (—m, 7]. You might think of arg(z)
as the four-quadrant inverse tangent- That is:

e If (a,b) is in the first or fourth quadrant, then 6 = tan~* (g)
e If a =0 and b # 0, then 0 is either 7/2 (for b > 0) or —7/2.

e If (a,b) is in the second quadrant, add m: 6 = tan™! (2) + 7

If (a,b) is in the third quadrant, subtract m: § = tan™! (g) -
e The argument of zero is not defined.

Best way to remember these: Quickly plot a + bi to see if you need to add or subtract 7.



1.5 Exponentials and Logs

The logarithm of a complex number is easy to compute if the number is in polar form:

In(a + bi) =1n (Teia) =1In(r) +In (ew) = In(r) + 0
The logarithm of zero is left undefined (as in the real case). However, we can now compute the log of a
negative number:

In(—1) =In(1-€7) =ir or the log of i : In(i) = In(1) +

Note that the usual rules of exponentiation and logarithms still apply.
To exponentiate a number, we convert it to multiplication (a trick we used in Calculus when dealing with

things like z%):

ab — ebIn(a)

Example, 2¢ = e'"(2) = cos(In(2)) + 4 sin(In(2))

Example: v1+i=(1+1)/2= (\@e”/‘l) V2 _ (21/4)et /8
Example: ¢ = /() = ¢i(in/2) = g=7/2

2 Real Polynomials and Complex Numbers

If ax? + bx + ¢ = 0, then the solutions come from the quadratic formula:
—b+ Vb2 — 4ac
r=—
2a

In the past, we only took real roots. Now we can use complex roots. For example, the roots of 22 4+ 1 = 0 are
z=1and x = —1.
Check:
(x—i)(x+i)=a’+ai—wi—i* =2 +1
Some facts about polynomials when we allow complex roots:

1. An n** degree polynomial can always be factored into n roots. (Unlike if we only have real roots!) This
is the Fundamental Theorem of Algebra.

2. If a + bi is a root to a real polynomial, then a — bi must also be a root. This is sometimes referred to as
“roots must come in conjugate pairs”.

3 Exercises

1. Suppose the roots to a cubic polynomial are a = 3, b = 1—2i and ¢ = 1+2i. Compute (z—a)(z—b)(x—c).
2. Find the roots to 22 — 2z + 10. Write them in polar form.

3. Show that: . Lz
Re(z) = 3 Im(z) =

4. For the following, let 27 = —3 + 24, 20 = —4i
(a) Compute 2122, 23/21
(b) Write z; and 2z in polar form.

5. In each problem, rewrite each of the following in the form a + bi:

(a) el+2i
b 62731‘
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