Solutions to Review Questions: Exam 3 Chapter 6, Sections 5.1-5.3

1. Use the definition of the Laplace transform to determine $\mathcal{L}(f)$:

(a)

$$f(t) = \begin{cases} 3, & 0 \le t < 2\\ 6 - t, & t \ge 2 \end{cases}$$

$$\int_0^\infty e^{-st} f(t) dt = \int_0^2 3e^{-st} dt + \int_2^\infty (6-t)e^{-st} dt$$

The second antiderivative is found by integration by parts:

$$\int_{2}^{\infty} (6-t)e^{-st} dt \Rightarrow \begin{cases} -t & e^{-st} \\ -1 & (-1/s)e^{-st} \\ + 0 & (1/s^{2})e^{-st} \end{cases} \Rightarrow e^{-st} \left(-\frac{6-t}{s} + \frac{1}{s^{2}} \right) \Big|_{2}^{\infty}$$

Putting it all together,

$$-\frac{3}{s} e^{-st} \Big|_0^2 + \left(0 - e^{-2s} \left(-\frac{4}{s} + \frac{1}{s^2}\right)\right) = -\frac{3e^{-2s}}{s} + \frac{3}{s} + \frac{4e^{-2s}}{s} - \frac{e^{-2s}}{s^2} = \frac{3}{s} + e^{-2s} \left(\frac{1}{s} - \frac{1}{s^2}\right)$$

NOTE: Did you remember to antidifferentiate in the third column?

(b)

$$f(t) = \begin{cases} e^{-t}, & 0 \le t < 5 \\ -1, & t \ge 5 \end{cases}$$

$$\int_0^\infty e^{-st} f(t) dt = \int_0^5 e^{-st} e^{-t} dt + \int_5^\infty -e^{-st} dt = \int_0^5 e^{-(s+1)t} dt + \int_5^\infty -e^{-st} dt$$

Taking the antiderivatives,

$$-\frac{1}{s+1}e^{-(s+1)t}\Big|_0^5 + \frac{1}{s}e^{-st}\Big|_5^\infty = \frac{1}{s+1} - \frac{e^{-5(s+1)}}{s+1} + 0 - \frac{e^{-5s}}{s}$$

- 2. Check your answers to Problem 1 by rewriting f(t) using the step (or Heaviside) function, and use the table to compute the corresponding Laplace transform.
 - (a) $f(t) = 3(u_0(t) u_2(t)) + (6 t)u_2(t)$

For the second term, notice that the table entry is for $u_c(t)h(t-c)$. Therefore, if

$$h(t-2) = 6 - t$$
 then $h(t) = 6 - (t+2) = 4 - t$

Therefore, the overall transform is:

$$3\left(\frac{1}{s} - \frac{e^{-2s}}{s}\right) + e^{-2s}\left(\frac{4}{s} - \frac{1}{s^2}\right) = \frac{3}{s} + e^{-2s}\left(\frac{1}{s} - \frac{1}{s^2}\right)$$

(b) $f(t) = e^{-t} (u_0(t) - u_5(t)) - u_5(t)$

We can rewrite f in preparation for the transform:

$$f(t) = e^{-t}u_0(t) - e^{-t}u_5(t) - u_5(t)$$

For the middle term,

$$h(t-5) = e^{-t} \implies h(t) = e^{-(t+5)} = e^{-5}e^{-t}$$

so the overall transform is:

$$F(s) = \frac{1}{s+1} - e^{-5} \frac{e^{-5s}}{s+1} - \frac{e^{-5s}}{s}$$

- 3. Determine the Laplace transform:
 - (a) $t^2 e^{-9t}$

$$\frac{2}{(s+9)^3}$$

(b) $e^{2t} - t^3 - \sin(5t)$

$$\frac{1}{s-2} - \frac{6}{s^4} - \frac{5}{s^2 + 25}$$

(c) $u_5(t)(t-5)^4$

$$\frac{24\mathrm{e}^{-5s}}{s^5}$$

(d) $e^{3t}\sin(4t)$

$$\frac{4}{(s-3)^2 + 16}$$

(e) $e^t \delta(t-3)$

In this case, notice that $f(t)\delta(t-c)$ is the same as $f(c)\delta(t-c)$, since the delta function is zero everywhere except at t=c. Therefore,

$$\mathcal{L}(e^t \delta(t - c)) = e^3 e^{-3s}$$

(f) $t^2u_4(t)$

In this case, let $h(t-4) = t^2$, so that

$$h(t) = (t+4)^2 = t^2 + 8t + 16 \implies H(s) = \frac{2+8s+16s^2}{s^3}$$

and the overall transform is $e^{-4s}H(s)$.

4. Find the inverse Laplace transform:

(a)
$$\frac{2s-1}{s^2-4s+6}$$

$$\frac{2s-1}{s^2-4s+6} = \frac{2s-1}{(s^2-4s+4)+2} = 2\frac{s-1/2}{(s-2)^2+2} =$$

$$2\left(\frac{s-2}{(s-2)^2+2} - \frac{3}{2\sqrt{2}}\frac{\sqrt{2}}{(s-2)^2+2}\right) \Rightarrow 2e^{2t}\cos(\sqrt{2}t) - \frac{3}{\sqrt{2}}e^{2t}\sin(\sqrt{2}t)$$

(b)
$$\frac{7}{(s+3)^3} = \frac{7}{2!} \frac{2!}{(s+3)^3} \Rightarrow \frac{7}{2} t^2 e^{-3t}$$

(c)
$$\frac{e^{-2s}(4s+2)}{(s-1)(s+2)} = e^{-2s}H(s)$$
, where

$$H(s) = \frac{4s+2}{(s-1)(s+2)} = \frac{2}{s-1} + \frac{2}{s+2} \implies h(t) = 2e^t + 2e^{-2t}$$

and the overall inverse: $u_2(t)h(t-2)$.

(d) $\frac{3s-2}{2s^2-16s+10}$ Notice that the denominator does not factor "nicely", so we'll go ahead and complete the square with the idea that we'll need hyperbolic sines and cosines in the inverse transform:

$$\frac{3s-2}{2(s^2-8s+5)} = \frac{3}{2} \cdot \frac{s-2/3}{(s-4)^2-11} = \frac{3}{2} \left(\frac{s-4}{(s-4)^2-11} - \frac{10}{3} \cdot \frac{1}{\sqrt{11}} \frac{\sqrt{11}}{(s-4)^2-11} \right)$$

The inverse transform is:

$$\frac{3}{2} \left(e^{4t} \cosh(\sqrt{11}t) - \frac{10}{3\sqrt{11}} e^{4t} \sinh(\sqrt{11}t) \right)$$

(e)
$$\left(e^{-2s} - e^{-3s}\right) \frac{1}{s^2 + s - 6} = \left(e^{-2s} - e^{-3s}\right) H(s)$$

Where:

$$H(s) = \frac{1}{s^2 + s - 6} = \frac{1}{5} \frac{1}{s - 2} - \frac{1}{5} \frac{1}{s + 3}$$

so that

$$h(t) = \frac{1}{5}e^{2t} - \frac{1}{5}e^{-3t}$$

and the overall transform is:

$$u_2(t)h(t-2) - u_3(t)h(t-3)$$

NOTE: The denominator was different before; corrected in class.

5. For the following differential equations, solve for Y(s) (the Laplace transform of the solution, y(t)). Do not invert the transform.

(a)
$$y'' + 2y' + 2y = t^2 + 4t$$
, $y(0) = 0$, $y'(0) = -1$

$$s^{2}Y + 1 + 2sY + 2Y = \frac{2}{s^{3}} + \frac{4}{s^{2}}$$

so that

$$Y(s) = \frac{2}{s^3(s^2 + 2s + 2)} + \frac{4}{s^2(s^2 + 2s + 2)} - \frac{1}{s^2 + 2s + 2}$$

(b)
$$y'' + 9y = 10e^{2t}$$
, $y(0) = -1$, $y'(0) = 5$

$$s^{2}Y + s - 5 + 9Y = \frac{10}{s - 2} \Rightarrow Y(s) = \frac{10}{(s - 2)(s^{2} + 9)} - \frac{s - 5}{s^{2} + 9}$$

(c)
$$y'' - 4y' + 4y = t^2 e^t$$
, $y(0) = 0$, $y'(0) = 0$

$$(s^2 - 4s + 4)Y = \frac{2}{(s-1)^3} \Rightarrow Y(s) = \frac{2}{(s-1)^3(s-2)^2}$$

- 6. Solve the given initial value problems using Laplace transforms:
 - (a) $2y'' + y' + 2y = \delta(t 5)$, zero initial conditions.

$$Y = \frac{e^{-5s}}{2s^2 + s + 2} = e^{-5s}H(s)$$

where

$$H(s) = \frac{1}{2s^2 + s + 2} = \frac{1}{2} \frac{1}{s^2 + \frac{1}{2}s + 1} = \frac{1}{2} \frac{1}{\left(s + \frac{1}{4}\right)^2 + \frac{15}{16}} = \frac{1}{2} \frac{4}{\sqrt{15}} \frac{\frac{\sqrt{15}}{4}}{\left(s + \frac{1}{4}\right)^2 + \frac{15}{16}}$$

Therefore,

$$h(t) = \frac{2}{\sqrt{15}} e^{-1/4t} \sin\left(\frac{\sqrt{15}}{4}t\right)$$

And the overall solution is $u_5(t)h(t-5)$

(b)
$$y'' + 6y' + 9y = 0$$
, $y(0) = -3$, $y'(0) = 10$
$$s^{2}Y + 3s - 10 + 6(sY + 3) + 9Y = 0 \Rightarrow Y = -\frac{3s + 8}{(s + 3)^{2}}$$

Partial Fractions:

$$-\frac{3s+8}{(s+3)^2} = -\frac{3}{(s+3)} + \frac{1}{(s+3)^2} \Rightarrow y(t) = -3e^{-3t} + te^{-3t}$$

(c)
$$y'' - 2y' - 3y = u_1(t)$$
, $y(0) = 0$, $y'(0) = -1$

$$Y = e^{-s} \frac{1}{s(s-3)(s+1)} + \frac{1}{(s+1)(s-3)} = e^{-s}H(s) + \frac{1}{4}\frac{1}{s-3} - \frac{1}{4}\frac{1}{s+1}$$

where

$$H(s) = \frac{1}{s(s-3)(s+1)} = -\frac{1}{3}\frac{1}{s} + \frac{1}{12}\frac{1}{s-3} + \frac{1}{4}\frac{1}{s+1}$$

so that

$$h(t) = -\frac{1}{3} + \frac{1}{12}e^{3t} + \frac{1}{4}e^{-t}$$

and the overall solution is:

$$y(t) = \frac{1}{4}e^{3t} - \frac{1}{4}e^{-t} + u_1(t)h(t-1)$$

(d)
$$y'' + 4y = \delta(t - \frac{\pi}{2}), y(0) = 0, y'(0) = 1$$

$$Y = e^{-\pi/2s} \frac{1}{s^2 + 4} + \frac{1}{s^2 + 4}$$

Therefore,

$$y(t) = \frac{1}{2}\sin(2t) + u_{\pi/2}(t)\frac{1}{2}\sin(2(t - \pi/2))$$

(e) $y'' + y = \sum_{k=1}^{\infty} \delta(t - 2k\pi)$, y(0) = y'(0) = 0. Write your answer in piecewise form.

$$Y(s) = \sum_{k=1}^{\infty} e^{-2k\pi s} \frac{1}{s^2 + 1}$$

Therefore, term-by-term,

$$y(t) = \sum_{k=1}^{\infty} u_{2k\pi}(t) \sin(t - 2\pi k) = \sum_{k=1}^{\infty} u_{2\pi k}(t) \sin(t)$$

Piecewise,

$$y(t) = \begin{cases} 0 & \text{if } 0 \le t < 2\pi \\ \sin(t) & \text{if } 2\pi \le t < 4\pi \\ 2\sin(t) & \text{if } 4\pi \le t < 6\pi \\ 3\sin(t) & \text{if } 6\pi \le t < 8\pi \\ \vdots & \vdots \end{cases}$$

7. Short Answer:

(a)
$$\int_0^\infty \sin(3t)\delta(t-\frac{\pi}{2}) dt = \sin(3\pi/2) = -1$$
, since

$$\int_0^\infty f(t)\delta(t-c)\,dt = f(c)$$

(b) If y'' + 2y' + 3y = 0 and y(0) = 1, y'(0) = -1, compute y''(0), y'''(0), and $y^{(4)}(0)$. We see that:

$$y'' = -2y' - 3y$$
 at $x = 0 \Rightarrow y''(0) = -2(-1) - 3(1) = -1$
 $y''' = -2y'' - 3y'$ at $x = 0 \Rightarrow y'''(0) = (-2)(-1) - 3(-1) = 5$
 $y^{(4)} = -2y''' - 3y''$ at $x = 0 \Rightarrow y^{(4)}(0) = (-2)(5) - 3(-1) = 7$

(c) Using your previous result, give the Taylor expansion of the solution to the differential equation using at least 5 terms.

$$y(x) = 1 - x - \frac{1}{2!}x^2 + \frac{5}{3!}x^3 + \frac{7}{4!}x^4 + \dots$$

(d) If $y'(t) = \delta(t - c)$, what is y(t)?

We could solve formally using Laplace transforms:

$$sY - y(0) = e^{-cs} \Rightarrow Y = \frac{e^{-cs}}{s} + \frac{y(0)}{s}$$

so that $y(t) = u_c(t) + y(0)$, where y(0) we can take to be an arbitrary constant.

(e) What is the expected radius of convergence for the series expansion of $f(x) = 1/(x^2 + 2x + 5)$ if the series is based at $x_0 = 1$?

The roots of the denominator are where $x^2 + 2x + 5 = 0$. Use the quadratic formula or complete the square to find the roots,

$$(x+1)^2 = -4 \Rightarrow x = -1 \pm 2i$$

Find the distance (in the complex plane) between x=1 and either root (the distances will be the same). In this case,

$$\rho = \sqrt{2^2 + 2^2} = \sqrt{8}$$

(f) Use Laplace transforms to solve for F(s), if

$$f(t) + 2 \int_0^t \cos(t - x) f(x) dx = e^{-t}$$

(So only solve for the transform of f(t), don't invert it back).

$$F(s) + 2F(s)\frac{s}{s^2 + 1} = \frac{1}{s + 1} \implies F(s)\left(\frac{(s + 1)^2}{s^2 + 1}\right) = \frac{1}{s + 1}$$

so that

$$F(s) = \frac{s^2 + 1}{(s+1)^3}$$

- (g) In order for the Laplace transform of f to exist, f must be? f must be piecewise continuous and of exponential order
- (h) Can we assume that the solution to: $y'' + p(x)y' + q(x)y = u_3(x)$ is a power series? No. Notice that the second derivative is not continuous at x = 3, but the second derivative of the power series would be.

8. More on Laplace Transforms:

(a) Your friend tells you that the solutions to the IVPs:

$$y'' + 2y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$ and $y'' + 2y' + y = \delta(t)$ $y(0) = 0$, $y'(0) = 0$

are exactly the same. Are they really? Explain.

Both models give the same solution if $t \geq 0$. If we consider all time, then the solutions are different.

Conceptually, the two IVPs are also modeling different behavior. In the second IVP, we are modeling a "hit" at time zero, but in the first, the spring-mass system (for example), is simply going through equilibrium at a velocity of 1.

By the way, the solution to both IVPs is

$$y(t) = te^{-t}$$

Valid for all positive time in both models, valid for all time in the first, only valid for $t \geq 0$ in the second (in the Dirac model, the function would be zero for all negative time due to the initial conditions).

- (b) Let f(t) = t and $g(t) = u_2(t)$.
 - i. Use the Convolution Theorem to compute f * g. To use the Convolution Theorem,

$$\mathcal{L}(t * u_2(t)) = \frac{1}{s^2} \cdot \frac{e^{-2s}}{s} = e^{-2s} \frac{1}{s^3} = e^{-2s} H(s)$$

so that $h(t) = \frac{1}{2}t^2$. The inverse transform is then

$$u_2(t)\frac{1}{2}(t-2)^2$$

ii. Verify your answer by directly computing the integral. By direct computation, we'll choose to "flip and shift" the function t:

$$f * g = \int_0^t (t - x)u_2(x) dx$$

Notice that $u_2(x)$ is zero until x=2, then $u_2(x)=1$. Therefore, if $t \leq 2$, the integral is zero. If $t \geq 2$, then:

$$\int_0^t (t-x)u_2(x) dx = \int_2^t t - x dx = tx - \frac{1}{2}x^2 \Big|_2^t = t^2 - \frac{1}{2}t^2 - 2t + 2 = \frac{1}{2}(t-2)^2$$

valid for $t \geq 2$, zero before that. This means that the convolution is:

$$t * u_2(t) = \frac{1}{2}(t-2)^2 u_2(t)$$

- 9. Find the recurrence relation between the coefficients for the power series solutions to the following:
 - (a) 2y'' + xy' + 3y = 0, $x_0 = 0$.

Substituting our power series in for y, y', y'':

$$2\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x\sum_{n=1}^{\infty} na_n x^{n-1} + 3\sum_{n=0}^{\infty} a_n x^n = 0$$

We want to write this as a single sum, with each index starting at the same value. First we'll simplify a bit:

$$\sum_{n=2}^{\infty} 2n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} na_n x^n + \sum_{n=0}^{\infty} 3a_n x^n = 0$$

Noting that in the second sum we could start at n = 0, since the first term (constant term) would be zero anyway, we can start all series with a constant term:

$$\sum_{k=0}^{\infty} (2(k+2)(k+1)a_{k+2} + ka_k + 3a_k) x^k = 0$$

From which we get the recurrence relation:

$$a_{k+2} = -\frac{k+3}{2(k+2)(k+1)} a_k$$

(b) $(1-x)y'' + xy' - y = 0, x_0 = 0$

Substituting our power series in for y, y', y'':

$$(1-x)\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} + x\sum_{n=1}^{\infty}na_nx^{n-1} - \sum_{n=0}^{\infty}a_nx^n = 0$$

We want to write this as a single sum, with each index starting at the same value. First we'll simplify a bit:

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - \sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} + \sum_{n=1}^{\infty} na_n x^n - \sum_{n=0}^{\infty} a_n x^n = 0$$

The two middle sums can have their respective index taken down by one (so that formally the series would start with $0x^0$):

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - \sum_{n=1}^{\infty} n(n-1)a_n x^{n-1} + \sum_{n=0}^{\infty} na_n x^n - \sum_{n=0}^{\infty} a_n x^n = 0$$

Now make all the indices the same. To do this, in the first sum make k = n - 2, in the second sum take k = n - 1. Doing this and collecting terms:

$$\sum_{k=0}^{\infty} ((k+2)(k+1)a_{k+2} - (k+1)ka_{k+1} + (k-1)a_k) x^k = 0$$

So we get the recursion:

$$a_{k+2} = \frac{(k+1)k \, a_{k+1} - (k-1)a_k}{(k+2)(k+1)}$$

(c) $y'' - xy' - y = 0, x_0 = 1$

Done in class;

$$a_{n+2} = \frac{1}{n+2} \left(a_{n+1} + a_n \right)$$

10. Find the first 5 terms of the power series solution to $e^x y'' + xy = 0$ if y(0) = 1 and y'(0) = -1.

Compute the derivatives directly, then (don't forget to divide by n!):

$$y(x) = 1 - x - \frac{1}{3!}x^6 + \frac{1}{3!}x^4 + \dots$$

11. Find the radius of convergence for the following series:

(b)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n+1}} (x+3)^n \quad \rho = 1/2$$