Homework Solutions: 1.1, 1.2

1 Section 1.1:

1. Problems 1-6

In these problems, we want to compare and contrast the direction fields for the given
(autonomous) differential equations of the form ¢ = ay + b. Once this is done, we
want to be able to predict the direction field for the more general case.

Problem 1: 3 = 3 — 2y. We should see that all solutions tend towards the
equilibrium: 3 — 2y =0, or y = 3/2.

Problem 2: ¢y’ = 2y — 3. The equilibrium solution is y = 3/2, and if we begin
on that solution, y(¢) = 3/2 for all time. If the solution to the DE starts above
y = 3/2, then the solution will tend to positive infinity. If the solution starts
below y = 3/2, the solution tends to negative infinity.

Problem 3: 3’ = 3 + 2y. In this case, the equilibrium changes to y = —3/2, and
like Problem 2, all other solutions will tend towards either positive or negative
infinity (predictable when the solution starts above or below —3/2, respectively).

Problem 4: ¢y’ = —1 — 2y. The equilibrium is y = —1/2. All solutions will tend
towards the equilibrium as ¢ — oo.

Problem 5: 3’ = 14 2y The equilibrium is again y = —1/2, except now the
solutions move away from the equilibrium, going to o0 as ¢ — oo (again, that
depends on the initial condition being above or below equilibrium).

Problem 6: 3y’ = y 4+ 2. The equilibrium is y = —2, and solutions again diverge to
+oo as t — oo.

2. Problem 7: If we want all solutions to tend towards y = 3, that will need to be the
equilibrium. Furthermore, in the equation ¥’ = ay + b, the value of a needs to be
negative. There are lots of possibilities; here is one:

y' =—-y+3

3. Problem 9: All solutions tend away from 3 = 2. In this case, the value of ¢ in /' = ay+b
needs to be positive, and we can write something like:

y =y—2

Summary for Problems 1-9: For ¢ = ay + b, the equilibrium solution is where
y' = 0, or where ay + b = 0. This gives:

y=-b/a



We can tell if the equilibrium is attracting (all solutions tend towards the equilibrium)
or repelling (all solutions tend away from equilibrium) based on the sign of a. If a > 0,
the equilibrium is repelling. If a < 0, the equilibrium is attracting.

. For Problems 26-32, use direction fields (with sample solutions) in Maple. Here I will
summarize what you should see, here are the basic Maple commands that I used:

with(DEtools):

DE26:=diff (y(t),t)=-2+t-y(t);

DE30:=diff (y(t),t)=3*sin(t)+1+y(t);

DE32:=diff (y(t),t)=—(2%t+y(t))/(2*y(t));

DEplot (DE26,y(t) ,t=-3..6,y=-4..4, [[y(0)=0.51, [y(0)=-0.51, [y(0)=-21, [y (0)=-411) ;
dsolve(DE26,y(t));

DEplot (DE30,y(t) ,t=-3..12,y=-5..5, [[y(0)=0], [y(0)=-11, [y(0)=11, [y (0)=-5/211);
dsolve (DE30,y(t));

DEplot (DE32,y(t) ,t=-2..2,y=-2..2);

e Problem 26: In problem 26, we see that all solutions tend towards the line y(t) =
—3+t as t = co. This result does not depend on the initial condition (I got this
line by looking at Maple’s solution to the DE).

e Problem 30: In this problem, if the initial condition is greater than y = —5/2,
then the solution tends towards positive infinity as t — oo. If the initial condition
is less than y = —5/2, then the solution moves to —oo as t — oo. If the initial
condition is y(0) = —5/2, then the solution stays bounded- It stays on the curve

y(t) = —; cos(t) — 2sin(t) -1

for all time. (I got this function by looking at Maple’s solution)

e Problem 32: This is where graphical analysis can play a large role in understanding
the solutions to the differential equation. You should try to have Maple give you
a solution using dsolve, but it won’t be terribly useful.
Here we see that all solutions starting above the t—axis will rotate (counterclock-
wise) around to the positive t—axis, and solutions that start below will rotate
clockwise towards the positive t—axis. Thus, it appears that all solutions are
converging to y(t) = 0.

Section 1.2:

. Problem 1(a,b). Use Maple to get the pictures:

with(DEtools):

DEOla:=diff (y(t),t)=-y(t)+5;
DEO1b:=diff (y(t),t)=-2xy(t)+5;
dfieldplot(DEOla,y(t),t=-3..3,y=-2..8);
dfieldplot (DEO1b,y(t),t=-3..3,y=-4..4);



2. Problem 3: ¢/ = —ay + b
(a) The solution is found by:
'— _q4 b = L dy = —adt = / ! d—/—adt:>
v = YT a y—>b/a v y—>b/a v

b
Inly—b/a| = —at +C = y— - =e 0 =0 = e
a

So that the solution is: ;
y(t) = - + Ae ™
a

(b) Your graph in this case should have a horizontal solution (the equilibrium solution)
at y = b/a. The slopes above the equilibrium should go down, the slope below
should point up.

(c) Describe how the solution changes under each of the following conditions:

i. a increases: This makes the solutions go to equilibrium faster than before
(the slopes are made more steep). Changing a and leaving b fixed also makes
the equilibrium get smaller.

ii. b increases: Does not change the rate at which the solutions go to the equi-
librium, but does change the equilibrium (if b increases, the equilibrium also
increases).

iii. Both a,b increase, but the ratio b/a stays fixed. This will change the rate at
which solutions go to the equilibrium, which stays fixed.

3. Problem 5: Undetermined Coefficients.

In this problem, we want to compare the solutions to:

vy = ay versus v =ay —b

The solution to the first equation is: y(¢t) = Ae®. To find the solution to the second,
we assume that the solution is of the form:

y(t) = Ae 4k

for some unknown k. Our problem is now to find k£, which we do by substituting our
guess into the differential equation.

The left hand side of the D.E. is just 3/, so if y = Ae® + k, then 3/ = aAe.

The right hand side of the D.E. is ay—b, so if y = Ae® +k, this becomes a(Ae* +k)—b.

Now equate the left and right hand sides, and solve for k:

ade™ = aqAe” +ak—b = 0=ak—-b = k=b/a



Therefore, the overall solution is (what we had before):
(1) = Aevt 42
= a

4. Problem 6: Solve y' = —ay + b using the previous technique.
We start with ¢ = —ay. The solution to this is y(t) = Ae™*. Next we assume the
solution to ¥’ = —ay + b is of the form:

y(t) = Ae™ + k

for some unknown constant k. Substitute our guess into the differential equation. The
left- and right- hand sides are:

y = —ade™ —ay+b=—-a (Ae_“t + k) +b
Setting these equal and solving for k:
—aAe™™ = —qAe™™ —ak+b 0=—ak+b k=b/a

so that: ;
y(t) = Ae o+ 2

5. Problem 7 (Field Mice): p' = 1p — 450

(a) From the previous two problems (or with the technique from the Chapter), we
can write down the solution:

dp 1

dt 2

d 1
P S dt

— 900 _
(p ) p—900 2

And integrate both sides:
1
Infp—900] =5t +C = p(t)= Aet/2t 1900
Now, if p(0) = 850, we can get the particular solution (solve for A):

p(0)=A+900=850 = A=—50

Therefore, p(t) = —50e(l/2* + 900. To say that the population became extinct
means that the population is zero. Set p(t) = 0 and solve for :

—50eM2t 4900 =0 = /P'=18 =1=2In(18)~5.78



(b) Similarly, if p(0) = po, with 0 < py < 900,
po=A+900 = A = py — 900
and:

e —900 900

—900)e™?t 4+ 900 =0 = e =
(Po Jer ¢ Do — 900 900 — py

(I wrote the last fraction like that so it would be clear that this is a positive
number before we take the log of both sides)

Therefore, our conclusion is: Given p’ = %p — 450, p(0) = po, where 0 < py < 900,
then the time at which extinction occurs is:

b oq [ 299
900 — py

(c) Find the initial population if the population becomes extinct in one year. Note
that ¢ is measured in months, so that would mean that we want to solve our
general equation for py if p(12) = 0. We can use our last result:

Solve for pq:

900 — po
900 ]

= = 900e*=900—p, = po=900—900e "
900 — po

6. Problem 15 (Newton’s Law of Cooling):

We are given:

d
di: = —k(u—T),  u(0)=u
We can solve this either directly or using the techniques from this HW. Directly,
1 1
dt = —kdt = / du:/—kdt = nju—T|=—kt+C
u—"1T u—"T

Now solve for u(t):
u—T = e—kt—l—c — e—ktec — Ae—kt

Also, find A in terms of the initial condition, u(0) = uy:
uw0)=A+T=u+0 = A=y —-T
In conclusion, the temperature at any time ¢:
u(t) = (ug — T)e ™™ +T

Part (b) is a little trickier, in that we need to properly translate the statement:



Let 7 be the time at which the initial temperature difference, ug — T has
been reduced by half. Find the relation between k£ and 7

If u(t) is the actual temperature at time ¢, then u(t) — T is the temperature difference
at any time ¢ between u(t) and T. The statement is then translated to read:

w(r) - T = ;(uo _ 7
Now substitute and solve for k:
(ug —T)e ™™ +T -T = ;(uo —T)
So that:

kT ; = —kr=In(1/2)=-I(?2) = k=hQ)/r



