
Homework Solutions: 1.1, 1.2

1 Section 1.1:

1. Problems 1-6

In these problems, we want to compare and contrast the direction �elds for the given
(autonomous) di�erential equations of the form y0 = ay + b. Once this is done, we
want to be able to predict the direction �eld for the more general case.

� Problem 1: y0 = 3 � 2y. We should see that all solutions tend towards the
equilibrium: 3� 2y = 0, or y = 3=2.

� Problem 2: y0 = 2y � 3. The equilibrium solution is y = 3=2, and if we begin
on that solution, y(t) = 3=2 for all time. If the solution to the DE starts above
y = 3=2, then the solution will tend to positive in�nity. If the solution starts
below y = 3=2, the solution tends to negative in�nity.

� Problem 3: y0 = 3 + 2y. In this case, the equilibrium changes to y = �3=2, and
like Problem 2, all other solutions will tend towards either positive or negative
in�nity (predictable when the solution starts above or below �3=2, respectively).

� Problem 4: y0 = �1 � 2y. The equilibrium is y = �1=2. All solutions will tend
towards the equilibrium as t!1.

� Problem 5: y0 = 1 + 2y The equilibrium is again y = �1=2, except now the
solutions move away from the equilibrium, going to �1 as t ! 1 (again, that
depends on the initial condition being above or below equilibrium).

� Problem 6: y0 = y+2. The equilibrium is y = �2, and solutions again diverge to
�1 as t!1.

2. Problem 7: If we want all solutions to tend towards y = 3, that will need to be the
equilibrium. Furthermore, in the equation y0 = ay + b, the value of a needs to be
negative. There are lots of possibilities; here is one:

y0 = �y + 3

3. Problem 9: All solutions tend away from y = 2. In this case, the value of a in y0 = ay+b
needs to be positive, and we can write something like:

y0 = y � 2

Summary for Problems 1-9: For y0 = ay + b, the equilibrium solution is where
y0 = 0, or where ay + b = 0. This gives:

y = �b=a



We can tell if the equilibrium is attracting (all solutions tend towards the equilibrium)
or repelling (all solutions tend away from equilibrium) based on the sign of a. If a > 0,
the equilibrium is repelling. If a < 0, the equilibrium is attracting.

4. For Problems 26-32, use direction �elds (with sample solutions) in Maple. Here I will
summarize what you should see, here are the basic Maple commands that I used:

with(DEtools):

DE26:=diff(y(t),t)=-2+t-y(t);

DE30:=diff(y(t),t)=3*sin(t)+1+y(t);

DE32:=diff(y(t),t)=-(2*t+y(t))/(2*y(t));

DEplot(DE26,y(t),t=-3..6,y=-4..4,[[y(0)=0.5],[y(0)=-0.5],[y(0)=-2],[y(0)=-4]]);

dsolve(DE26,y(t));

DEplot(DE30,y(t),t=-3..12,y=-5..5,[[y(0)=0],[y(0)=-1],[y(0)=1],[y(0)=-5/2]]);

dsolve(DE30,y(t));

DEplot(DE32,y(t),t=-2..2,y=-2..2);

� Problem 26: In problem 26, we see that all solutions tend towards the line y(t) =
�3 + t as t!1. This result does not depend on the initial condition (I got this
line by looking at Maple's solution to the DE).

� Problem 30: In this problem, if the initial condition is greater than y = �5=2,
then the solution tends towards positive in�nity as t!1. If the initial condition
is less than y = �5=2, then the solution moves to �1 as t ! 1. If the initial
condition is y(0) = �5=2, then the solution stays bounded- It stays on the curve

y(t) = �
3

2
cos(t)�

3

2
sin(t)� 1

for all time. (I got this function by looking at Maple's solution)

� Problem 32: This is where graphical analysis can play a large role in understanding
the solutions to the di�erential equation. You should try to have Maple give you
a solution using dsolve, but it won't be terribly useful.

Here we see that all solutions starting above the t�axis will rotate (counterclock-
wise) around to the positive t�axis, and solutions that start below will rotate
clockwise towards the positive t�axis. Thus, it appears that all solutions are
converging to y(t) = 0.

2 Section 1.2:

1. Problem 1(a,b). Use Maple to get the pictures:

with(DEtools):

DE01a:=diff(y(t),t)=-y(t)+5;

DE01b:=diff(y(t),t)=-2*y(t)+5;

dfieldplot(DE01a,y(t),t=-3..3,y=-2..8);

dfieldplot(DE01b,y(t),t=-3..3,y=-4..4);



2. Problem 3: y0 = �ay + b

(a) The solution is found by:

y0 = �a

 
y �

b

a

!
)
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y � b=a
dy = �a dt )

Z 1

y � b=a
dy =

Z
�a dt)

ln jy � b=aj = �at+ C ) y �
b

a
= e�at+C = e�ateC = Ae�at

So that the solution is:

y(t) =
b

a
+ Ae�at

(b) Your graph in this case should have a horizontal solution (the equilibrium solution)
at y = b=a. The slopes above the equilibrium should go down, the slope below
should point up.

(c) Describe how the solution changes under each of the following conditions:

i. a increases: This makes the solutions go to equilibrium faster than before
(the slopes are made more steep). Changing a and leaving b �xed also makes
the equilibrium get smaller.

ii. b increases: Does not change the rate at which the solutions go to the equi-
librium, but does change the equilibrium (if b increases, the equilibrium also
increases).

iii. Both a; b increase, but the ratio b=a stays �xed. This will change the rate at
which solutions go to the equilibrium, which stays �xed.

3. Problem 5: Undetermined Coe�cients.

In this problem, we want to compare the solutions to:

y0 = ay versus y0 = ay � b

The solution to the �rst equation is: y(t) = Aeat. To �nd the solution to the second,
we assume that the solution is of the form:

y(t) = Aeat + k

for some unknown k. Our problem is now to �nd k, which we do by substituting our
guess into the di�erential equation.

The left hand side of the D.E. is just y0, so if y = Aeat + k, then y0 = aAeat.

The right hand side of the D.E. is ay�b, so if y = Aeat+k, this becomes a(Aeat+k)�b.

Now equate the left and right hand sides, and solve for k:

aAeat = aAeat + ak � b ) 0 = ak � b ) k = b=a



Therefore, the overall solution is (what we had before):

y(t) = Aeat +
b

a

4. Problem 6: Solve y0 = �ay + b using the previous technique.

We start with y0 = �ay. The solution to this is y(t) = Ae�at. Next we assume the
solution to y0 = �ay + b is of the form:

y(t) = Ae�at + k

for some unknown constant k. Substitute our guess into the di�erential equation. The
left- and right- hand sides are:

y0 = �aAe�at � ay + b = �a
�
Ae�at + k

�
+ b

Setting these equal and solving for k:

�aAe�at = �aAe�at � ak + b 0 = �ak + b k = b=a

so that:

y(t) = Ae�at +
b

a

5. Problem 7 (Field Mice): p0 = 1
2
p� 450

(a) From the previous two problems (or with the technique from the Chapter), we
can write down the solution:

dp

dt
=

1

2
(p� 900)

dp

p� 900
=

1

2
dt

And integrate both sides:

ln jp� 900j =
1

2
t+ C ) p(t) = Ae(1=2)t + 900

Now, if p(0) = 850, we can get the particular solution (solve for A):

p(0) = A+ 900 = 850 ) A = �50

Therefore, p(t) = �50e(1=2)t + 900. To say that the population became extinct
means that the population is zero. Set p(t) = 0 and solve for t:

�50e(1=2)t + 900 = 0 ) e(1=2)t = 18 ) t = 2 ln(18) � 5:78



(b) Similarly, if p(0) = p0, with 0 < p0 < 900,

p0 = A+ 900) A = p0 � 900

and:

(p0 � 900)e(1=2)t + 900 = 0 ) e(1=2)t =
�900

p0 � 900
=

900

900� p0

(I wrote the last fraction like that so it would be clear that this is a positive
number before we take the log of both sides)

Therefore, our conclusion is: Given p0 = 1
2
p� 450, p(0) = p0, where 0 < p0 < 900,

then the time at which extinction occurs is:

t = 2 ln

 
900

900� p0

!

(c) Find the initial population if the population becomes extinct in one year. Note
that t is measured in months, so that would mean that we want to solve our
general equation for p0 if p(12) = 0. We can use our last result:

12 = 2 ln

 
900

900� p0

!

Solve for p0:

900

900� p0
= e6 ) 900e�6 = 900� p0 ) p0 = 900� 900e�6

6. Problem 15 (Newton's Law of Cooling):

We are given:
du

dt
= �k(u� T ); u(0) = u0

We can solve this either directly or using the techniques from this HW. Directly,

1

u� T
dt = �k dt )

Z 1

u� T
du =

Z
�k dt ) ln ju� T j = �kt+ C

Now solve for u(t):
u� T = e�kt+c = e�ktec = Ae�kt

Also, �nd A in terms of the initial condition, u(0) = u0:

u(0) = A+ T = u+ 0 ) A = u0 � T

In conclusion, the temperature at any time t:

u(t) = (u0 � T )e�kt + T

Part (b) is a little trickier, in that we need to properly translate the statement:



Let � be the time at which the initial temperature di�erence, u0 � T has
been reduced by half. Find the relation between k and �

If u(t) is the actual temperature at time t, then u(t)� T is the temperature di�erence

at any time t between u(t) and T . The statement is then translated to read:

u(�)� T =
1

2
(u0 � T )

Now substitute and solve for k:

(u0 � T )e�k� + T � T =
1

2
(u0 � T )

So that:

e�k� =
1

2
) �k� = ln(1=2) = � ln(2) ) k = ln(2)=�


