
Section 1.3

1. Problem 1: Order is 2, and it is linear (divide by the leading t2)

2. Problem 3: Order is 4, and it is linear.

3. Problem 5: Order is 2, and nonlinear (because of sin(t + y) term).

4. Problem 7: Do you know the definition of cosh(t)? See our class website before doing
this problem- There are practice problems there). You might use the definition directly,
or from the practice sheet, see that:

d

dx
(cosh(x)) = sinh(x)

d

dx
(sinh(x)) = cosh(x)

Now, to solve problem 7, we want to verify that either y(t) = et or y(t) = cosh(t)
satisfies the differential equation: y′′ − y = 0.

If y(t) = et, then y′(t) = et, and y′′(t) = et, so

y′′ − y = et − et = 0

If y(t) = cosh(t), then y′ = sinh(t) and y′′(t) = cosh(t), so again,

y′′ − y = cosh(t)− cosh(t) = 0

5. Problem 9: Show that y(t) = 3t + t2 satisfies the ODE: ty′ − y = t2.

First compute the derivative, then substitute into the expression:

y′ = 3 + 2t

so that:
ty′ − y = t(3 + 2t)− (3t + t2) = 3t + 2t2 − 3t− t2 = t2

6. Problem 14: Show that the function

y(t) = et2
∫ t

0
e−s2

ds + et2

solves: y′ − 2ty = 1.

To show this directly, we need to recall how to differentiate a function like:

g(t) =
∫ t

0
f(s) ds

From the Fundamental Theorem of Calculus, g′(t) = f(t).



Therefore, if y(t) is as given above, the derivative is found by using the product rule:

y′ =
(
2tet2

)
·
∫ t

0
e−s2

ds + et2e−t2 + 2tet2

If we simplify a bit, and subtract:

y′ = 2tet2
∫ t

0
e−s2

ds + 1 + 2tet2

−2ty = −2t
(
et2

∫ t

0
e−s2

ds + et2
)

We see that the only remaining term is 1.

(NOTE: In Section 2.1, we’ll see where this strange integral is coming from)

7. Problem 15: We did something similar in class: If y = ert, substitute it into the
differential equation-

y′ + 2y = 0 ⇒ rert + 2ert = 0

Now solve for r:

(r + 2)ert = 0 ⇒ r + 2 = 0 ⇒ r = −2

Note that ert = 0 has no solution.

Conclusion: y(t) = e−2t.

Side Remark: We solved this in Section 1.2 by doing this:

y′ = −2y ⇒ 1

y
dy = −2 dt ⇒

∫ 1

y
dy = −2

∫
dt

so that:
ln |y| = −2t + c ⇒ y(t) = Ae−2t

8. Same setup as Problem 15: If y(t) = ert,

y′(t) = rert y′′(t) = r2ert

Substitute these into the DE: y′′ − y′ − 6y = 0 and solve for r:

r2ert + rert − 6ert = 0 ⇒ ert
(
r2 + r − 6

)
= 0

Again, ert = 0 has no solution, so just solve:

r2 + r − 6 = 0 (r + 3)(r − 2) = 0 r = −3, 2

Either y = e−3t or y = e2t will solve the DE.



9. Problem 19: In this case, assume y = tr, so y′ = rtr−1 and y′′ = r(r−1)tr−2. Substitute
these into the DE:

t2y′′ + 4ty′ + 2y = 0 ⇒ t2 · r(r − 1)tr−2 + 4t · rtr−1 + 2tr = 0

Simplify and factor out tr:

tr(r(r − 1) + 4r + 2) = 0

This equation must be true for ALL t > 0 (given in the problem), so tr = 0 does not
give a solution. Solve for r:

r2 − r + 4r + 2 = 0 ⇒ r2 + 3r + 2 = 0 ⇒ (r + 1)(r + 2) = 0

Therefore, y(t) = 1
t

and y(t) = 1
t2

solve the differential equation.

10. Problem 21: The order is 2, linear.

11. Problem 25: Show that each of these:

u(x, y) = cos(x) cosh(y) u(x, y) = ln(x2 + y2)

solve the Partial Differential Equation (PDE):

uxx + uyy = 0

If u(x, y) = cos(x) cosh(y), then

ux = − sin(x) cosh(y) uxx = − cos(x) cosh(y)

Similarly,
uy = cos(x) sinh(y) uyy = cos(x) cosh(y)

And if we add uxx to uyy, we get zero.

If u(x, y) = ln(x2 + y2), then:

ux =
2x

x2 + y2
uxx =

−2(x2 − y2)

(x2 + y2)2

Similarly,

uy =
2y

x2 + y2
uyy =

−2(y2 − x2)

(x2 + y2)2

And again we see that if we add uxx and uyy, we get zero.


