## Section 1.3

- 1. Problem 1: Order is 2, and it is linear (divide by the leading  $t^2$ )
- 2. Problem 3: Order is 4, and it is linear.
- 3. Problem 5: Order is 2, and nonlinear (because of  $\sin(t+y)$  term).
- 4. Problem 7: Do you know the definition of  $\cosh(t)$ ? See our class website before doing this problem. There are practice problems there). You might use the definition directly, or from the practice sheet, see that:

$$\frac{d}{dx}(\cosh(x)) = \sinh(x)$$
  $\frac{d}{dx}(\sinh(x)) = \cosh(x)$ 

Now, to solve problem 7, we want to verify that either  $y(t) = e^t$  or  $y(t) = \cosh(t)$  satisfies the differential equation: y'' - y = 0.

If 
$$y(t) = e^t$$
, then  $y'(t) = e^t$ , and  $y''(t) = e^t$ , so

$$y'' - y = e^t - e^t = 0$$

If  $y(t) = \cosh(t)$ , then  $y' = \sinh(t)$  and  $y''(t) = \cosh(t)$ , so again,

$$y'' - y = \cosh(t) - \cosh(t) = 0$$

5. Problem 9: Show that  $y(t) = 3t + t^2$  satisfies the ODE:  $ty' - y = t^2$ . First compute the derivative, then substitute into the expression:

$$y' = 3 + 2t$$

so that:

$$ty' - y = t(3+2t) - (3t+t^2) = 3t + 2t^2 - 3t - t^2 = t^2$$

6. Problem 14: Show that the function

$$y(t) = e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2}$$

solves: y' - 2ty = 1.

To show this directly, we need to recall how to differentiate a function like:

$$g(t) = \int_0^t f(s) \, ds$$

From the Fundamental Theorem of Calculus, g'(t) = f(t).

Therefore, if y(t) is as given above, the derivative is found by using the product rule:

$$y' = (2te^{t^2}) \cdot \int_0^t e^{-s^2} ds + e^{t^2}e^{-t^2} + 2te^{t^2}$$

If we simplify a bit, and subtract:

$$y' = 2te^{t^2} \int_0^t e^{-s^2} ds + 1 + 2te^{t^2}$$

$$-2ty = -2t \left( e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2} \right)$$

We see that the only remaining term is 1.

(NOTE: In Section 2.1, we'll see where this strange integral is coming from)

7. Problem 15: We did something similar in class: If  $y = e^{rt}$ , substitute it into the differential equation-

$$y' + 2y = 0 \quad \Rightarrow \quad re^{rt} + 2e^{rt} = 0$$

Now solve for r:

$$(r+2)e^{rt} = 0 \implies r+2 = 0 \implies r = -2$$

Note that  $e^{rt} = 0$  has no solution.

Conclusion:  $y(t) = e^{-2t}$ .

Side Remark: We solved this in Section 1.2 by doing this:

$$y' = -2y$$
  $\Rightarrow$   $\frac{1}{y}dy = -2dt$   $\Rightarrow$   $\int \frac{1}{y}dy = -2\int dt$ 

so that:

$$ln |y| = -2t + c \quad \Rightarrow \quad y(t) = Ae^{-2t}$$

8. Same setup as Problem 15: If  $y(t) = e^{rt}$ ,

$$y'(t) = re^{rt} y''(t) = r^2 e^{rt}$$

Substitute these into the DE: y'' - y' - 6y = 0 and solve for r:

$$r^{2}e^{rt} + re^{rt} - 6e^{rt} = 0 \implies e^{rt}(r^{2} + r - 6) = 0$$

Again,  $e^{rt} = 0$  has no solution, so just solve:

$$r^{2} + r - 6 = 0$$
  $(r+3)(r-2) = 0$   $r = -3, 2$ 

Either  $y = e^{-3t}$  or  $y = e^{2t}$  will solve the DE.

9. Problem 19: In this case, assume  $y = t^r$ , so  $y' = rt^{r-1}$  and  $y'' = r(r-1)t^{r-2}$ . Substitute these into the DE:

$$t^{2}y'' + 4ty' + 2y = 0 \implies t^{2} \cdot r(r-1)t^{r-2} + 4t \cdot rt^{r-1} + 2t^{r} = 0$$

Simplify and factor out  $t^r$ :

$$t^r(r(r-1) + 4r + 2) = 0$$

This equation must be true for ALL t > 0 (given in the problem), so  $t^r = 0$  does not give a solution. Solve for r:

$$r^{2} - r + 4r + 2 = 0$$
  $\Rightarrow$   $r^{2} + 3r + 2 = 0$   $\Rightarrow$   $(r+1)(r+2) = 0$ 

Therefore,  $y(t) = \frac{1}{t}$  and  $y(t) = \frac{1}{t^2}$  solve the differential equation.

- 10. Problem 21: The order is 2, linear.
- 11. Problem 25: Show that each of these:

$$u(x,y) = \cos(x)\cosh(y) \qquad u(x,y) = \ln(x^2 + y^2)$$

solve the Partial Differential Equation (PDE):

$$u_{xx} + u_{yy} = 0$$

If  $u(x,y) = \cos(x)\cosh(y)$ , then

$$u_x = -\sin(x)\cosh(y)$$
  $u_{xx} = -\cos(x)\cosh(y)$ 

Similarly,

$$u_y = \cos(x)\sinh(y)$$
  $u_{yy} = \cos(x)\cosh(y)$ 

And if we add  $u_{xx}$  to  $u_{yy}$ , we get zero.

If  $u(x, y) = \ln(x^2 + y^2)$ , then:

$$u_x = \frac{2x}{x^2 + y^2}$$
  $u_{xx} = \frac{-2(x^2 - y^2)}{(x^2 + y^2)^2}$ 

Similarly,

$$u_y = \frac{2y}{x^2 + y^2}$$
  $u_{yy} = \frac{-2(y^2 - x^2)}{(x^2 + y^2)^2}$ 

And again we see that if we add  $u_{xx}$  and  $u_{yy}$ , we get zero.