
Solutions: Section 2.1

1. Problem 1: See the Maple worksheet to get the direction field. You should see that it
looks like all solutions are approaching some curve (maybe a line?) as t → ∞. To be
more analytic, let us solve the DE using the Method of Integrating Factors.

y′ + 3y = t + e−2t ⇒ e3t (y′ + 3y) = e3t
(
t + e−2t

)
⇒

(
e3ty(t)

)′
= te3t + et

Integrate both sides Hint: We need to use “integration by parts” to integrate te3t.
Using a table as in class:

+ t e3t

− 1 (1/3)e3t

+ 0 (1/9)e3t

⇒
∫

te3t dt =
1

3
e3t − 1

9
e3t

Putting it all together,

e3ty(t) =
1

3
te3t − 1

9
e3t + et + C

so that

y(t) =
1

3
t− 1

9
+

1

e−2t
+

C

e3t

Notice that the last two terms go to zero as t →∞, so we see that y(t) does approach
a line:

1

3
t− 1

9
as t →∞.

2. Problem 3: See Maple for the direction field. Very similar situation to Problem 1.
Let’s go ahead and solve:

y′ + y = te−t + 1

Multiply both sides by e
∫

p(t) dt = et:

et (y′ + y) = t + et ⇒
(
ety(t)

)′
= t + et

Integrate both sides:

ety(t) =
1

2
t2 + et + C ⇒ y(t) =

1

2
t2e−t + 1 + Ce−t

This could be written as:

y(t) = 1 +
t2

2et
+

C

et

so that it is clear that, as t →∞, y(t) → 1, which we also see in the direction field.



3. Problem 11: See Maple for the direction field, where it looks like all solutions are
approaching some periodic function as t →∞. Let’s solve it:

y′ + y = 5 sin(2t)

As in the last exercise, multiply both sides by et:

et(y′ + y) = 5et sin(2t) ⇒
(
ety(t)

)′
= 5et sin(2t)

To integrate the right-hand-side of this equation, we will need to use integration by
parts twice. In tabular form:

+ et sin(2t)
− et −(1/2) cos(2t)
+ et −(1/4) sin(2t)

⇒
∫

et sin(2t) dt = −1

2
et cos(2t)+

1

4
et sin(2t)−1

4

∫
et sin(2t) dt

Add the last integral to the left:

5

4

∫
et sin(2t) dt = −1

2
et cos(2t) +

1

4
et sin(2t)

so that: ∫
et sin(2t) dt = −2

5
et cos(2t) +

1

5
et sin(2t) + C1

Going back to the differential equation,

ety(t) = −2et cos(2t) + et sin(2t) + C2

so that the general solution is:

y(t) = −2 cos(2t) + sin(2t) + C2e
−t

We see that, as t →∞, y(t) does indeed go to a periodic function.

In problems 13, 15, 16, solve the IVP. For these problems, I will leave the details
out, but I will give the integrating factor. Be sure to ask in class if you’re not sure how
to solve them!

4. Problem 13: (You’ll need to integrate by parts!)

y′ − y = 2te2t e
∫

p(t) dt = e−t

y(t) = e2t(2t− 2) + 3et



5. Problem 15:
ty′ + 2y = t2 − t + 1

Be sure to put in standard form before solving:

y′ +
2

t
y = t− 1 +

1

t
e
∫

p(t) dt = t2

and

y(t) =
1

4
t2 − 1

3
t +

1

2
+

1

12t2

6. Problem 16: In this problem, the integrating factor is again t2:

y′ +
2

t
· y =

cos(t)

t2
⇒ y(t) =

sin(t)

t2

7. Problem 21: See the example Maple worksheet to get the direction field. To solve the
IVP (with y(0) = a):

y′ = −1

2
y = 2 cos(t)

The integrating factor is: e−(1/2)t:(
e−(1/2)ty

)′
= 2e−(1/2)t cos(t)

Use integration by parts twice:

+ cos(t) e−(1/2)t

− − sin(t) −2e−(1/2)t

+ − cos(t) 4e−(1/2)t

⇒

∫
e−(1/2)t cos(t) dt = −2e−(1/2)t cos(t) + 4e−(1/2)t sin(t)− 4

∫
e−(1/2)t cos(t) dt

Add the last integral to both sides and divide by 5:∫
e−(1/2)t cos(t) dt = −2

5
e−(1/2)t cos(t) +

4

5
e−(1/2)t sin(t) + C

Going back to get the solution (be sure to multiply the antiderivative by 2:

e−(1/2)ty = −4

5
e−(1/2)t cos(t) +

8

5
e−(1/2)t sin(t) + C

So that:

y(t) = −4

5
cos(t) +

8

5
sin(t) + Ce(1/2)t



Solve for the constant in terms of the initial condition y(0) = a:

a = −4

5
+ C ⇒ C = a +

4

5

The solution to the IVP is:

y(t) = −4

5
cos(t) +

8

5
sin(t) +

(
a +

4

5

)
e(1/2)t

In particular, we see that if y(0) = a = −4/5, then the solution will be the periodic part
(and will not become unbounded). Otherwise (because of the exponential function),
all other solutions will become unbounded as t →∞.

8. Problem 24: See the Maple sample for the direction field.

To solve the IVP, first write in standard form, then find the integrating factor:

y′ +
t + 1

t
y = 2e−t, t > 0, y(1) = a

The integrating factor: First compute the antiderivative-∫ t + 1

t
dt =

∫
1 +

1

t
dt = t + ln(t), t > 0

And exponentiate:

e
∫

p(t) dt = et+ln(t) = eteln(t) = tet

Now, (
tety(t)

)′
= 2t ⇒ tety(t) = t2 + C

so that the general solution is:

y(t) =
t2 + C

tet

Solve in terms of a:

y(1) =
1 + C

e
= a ⇒ C = ae− 1

so that:

y(t) =
t2 + (ae− 1)

tet

Analysis: If the constant ae − 1 = 0, then y(t) becomes te−t, which is zero at time
t = 0. Otherwise, all other solutions are not defined at time t = 0. The value of a is
then a = 1/e ≈ 0.3679. Furthermore, as t → 0, the solution will tend to zero (as does
all solutions).



9. Problem 27: Solve the IVP

y′ +
1

2
y = 2 cos(t), y(0) = −1

Using the integrating factor of e(1/2)t,(
e(1/2)ty(t)

)′
= 2e(1/2)t cos(t)

To integrate the right hand side of the equation, use integration by parts twice (since
we’ve showed this a couple of times, I leave it out here):

e(1/2)ty(t) =
4

5
e(1/2)t cos(t) +

8

5
e(1/2)t sin(t) + C

so that:

y(t) =
4

5
cos(t) +

8

5
sin(t) + Ce−(1/2)t

Solve for C:

−1 =
4

5
+ C ⇒ C = −9

5

and the solution to the IVP is:

y(t) =
4

5
cos(t) +

8

5
sin(t)− 9

5
e−(1/2)t

We now want to find the coordinates of the first local maximum, t > 0. This means
that we want to solve for the first t for which the derivative is zero. Unfortunately, we
cannot do this exactly, so we can use Maple to find a numerical approximation. Here
is the Maple code to do this:

DE27:=diff(y(t),t)+(1/2)*y(t)=2*cos(t);

Y27:=dsolve({DE27,y(0)=-1},y(t));

dy:=diff(rhs(Y27),t);

plot(dy,t=0..3);

tsol:=fsolve(dy=0,t=0..2);

evalf(subs(t=tsol,rhs(Y27)));

so the coordinates are approximately (1.3643, 0.8201).

Notes about the Maple commands:

• If you look at Y27, you’ll see that:

Y27 := y(t) = 4/5*cos(t)+8/5*sin(t)-9/5*exp(-1/2*t)

Therefore, to plot the function, we need the right hand side of Y27. In Maple,
this is rhs(Y27).



• To get the FIRST value of t, I need a rough estimate for the fsolve function.
That’s why we plot the derivative first. You see in the fsolve line, t=0..2, which
is the estimate I got from the graph.

10. Problem 29: Solve the IVP:

y′ +
1

4
y = 3 + 2 cos(2t) y(0) = 0

To find the solution, we see that the integrating factor is e(1/4)t. Multiply both sides
by the I.F. and integrate. Note that again we’ll need to integrate by parts twice to
evaluate: ∫

e(1/4)t cos(2t) dt =
4

65
e(1/4)t cos(2t) +

32

65
e(1/4)t sin(2t)

Therefore, (
e(1/4)ty(t)

)
= 12e(1/4)t +

8

65
e(1/4)t cos(2t) +

64

65
e(1/4)t sin(2t) + C

so that:

y(t) = 12 +
8

65
cos(2t) +

64

65
sin(2t) + Ce−(1/4)t

Solve for C:

0 = 12 +
8

65
+ C ⇒ C = −788

65
so that the overall solution is:

y(t) = 12 +
8

65
cos(2t) +

64

65
sin(2t)− 788

65
e−(1/4)t

As t → ∞, the last term (with the exponential) drops out, leaving the rest. That
means the solution will become periodic (oscillating about the line y = 12) as t →∞.

To solve for the first value of t for which the function crosses the line y = 12, we need
to solve the following equation for the first t for which:

12 = 12 +
8

65
cos(2t) +

64

65
sin(2t)− 788

65
e−(1/4)t

Or, the first time that:

8

65
cos(2t) +

64

65
sin(2t)− 788

65
e−(1/4)t = 0

We cannot solve this analytically, so we look for a numerical approximation in Maple:

DE29:=diff(y(t),t)+(1/4)*y(t)=3+2*cos(2*t);

Y29:=dsolve({DE29,y(0)=0},y(t));

plot(rhs(Y29)-12,t=9..10.2);

fsolve(rhs(Y29)-12=0,t=9.8..10.2);



and t ≈ 10.0658.

11. Problem 30: No Maple here! Solve the IVP:

y′ − y = 1 + 3 sin(t) y(0) = y0

This is very similar to Problem 29. Note that:∫
e−t sin(t) dt = −1

2
e−t (cos(t) + sin(t))

Therefore, the general solution is (details left out):

y(t) = −1− 3

2
(cos(t) + sin(t)) +

(
5

2
+ y0

)
et

To keep the solution finite (or bounded) as t → ∞, we must find y0 so that the
exponential term drops out- This means that y0 = −5/2.

12. Problem 32: Show that all solutions to:

2y′ + ty = 2

approach a finite limit as t →∞, and find the limiting value.

We’ll find the general solution by getting the Integrating Factor:

p(t) =
1

2
t ⇒ e

∫
p(t) dt = e(1/4)t2

Now, (
e(1/4)t2y(t)

)′
= e(1/4)t2

so that

e(1/4)t2y(t) =
∫ t

0
e(1/4)x2

dx + C

I’m writing this antiderivative as a particular antiderivative so that (i) the constant of
integration comes out and (ii) it is clear how to differentiate the integral. Using this
notation,

y(t) = e−(1/4)t2
∫ t

0
e(1/4)x2

dx + Ce−(1/4)t2 =

∫ t

0
e(1/4)x2

dx + C

e(1/4)t2

We set it up this way since the book hints that we should try to use L’Hospital’s
rule. A quick check of the numerator and denominator should convince you that it is
appropriate here (that is, we have “∞/∞”).

lim
t→∞

y(t) = lim
t→∞

e(1/4)t2

(1/2)te(1/4)t2
= lim

t→∞

2

t
= 0



13. For Problem 34, we are asked to go backwards: Given a desired solution, construct an
appropriate first order linear differential equation for it.

For this problem, we want y(t) → 3 as t →∞. Here are two possible ways of proceed-
ing:

• Suppose y(t) = 3+Ce−t (so it looks a lot like the solutions we got for the previous
HW problems). Then y′ = −Ce−t, and we see that:

y′ + y = 3

(I’ll leave the verification to you).

• As another possible approach, we could take:

y(t) = 3 +
C

t2

Now, y′ = −2C/t3. We see that if we take ty′ and add it to 2y, the terms with C
cancel and we’re left with 6. Therefore, the ODE is:

ty′ + 2y = 6

(I’ll leave the verification to you).

14. Problem 35 is similar. There are many ways of constructing such a differential equation-
It’s easiest to start with a desired solution. We’ll again show two possibilities:

• If we would like y(t) = 3− t + Ce−3t, then y′ = −1− 3Ce−3t, and:

y′ + 3y = 8− 3t

• If we would like y(t) = 3− t + C
t
, then y′ = −1− C/t2, and we see that:

ty′ + y = 3− 2t

15. Problems 38, 39: Let’s wait until Section 3.7 for this method.


