
Solutions: Section 2.2

1. Problem 1: Give the general solution: y′ = x2/y

y dy = x2 dx ⇒ 1

2
y2 =

1

3
x3 + C

2. Problem 3: Give the general solution to y′ + y2 sin(x) = 0.

First write in standard form:

dy

dx
= −y2 sin(x) ⇒ − 1

y2
dy = sin(x) dx

Before going any further, notice that we have divided by y, so we need to say that this
is value as long as y(x) 6= 0. In fact, we see that the function y(x) = 0 IS a possible
solution.

With that restriction in mind, we proceed by integrating both sides to get:

1

y
= − cos(x) + C ⇒ y =

1

C − cos(x)

3. Problem 7: Give the general solution:

dy

dx
=

x− e−x

y + ey

First, note that dy/dx exists as long as y 6= ey. With that requirement, we can proceed:

(y + ey) dy =
(
x + e−x

)
dx

Integrating, we get:
1

2
y2 + ey =

1

2
x2 − e−x + C

In this case, we cannot algebraically isolate y, so we’ll leave our answer in this form
(we could multiply by two).

4. Problem 9: Let y′ = (1− 2x)y2, y(0) = −1/6.

First, we find the solution. Before we divide by y, we should make the note that y 6= 0.
We also see that y(x) = 0 is a possible solution (although NOT a solution that satisfies
the initial condition).

Now solve: ∫
y−2 dy =

∫
(1− 2x) dx ⇒ −y−1 = x− x2 + C

Solve for the initial value:
6 = 0 + C ⇒ C = 6



The solution is (solve for y):

y(x) =
1

x2 − x− 6
=

1

(x− 3)(x + 2)

The solution is valid only on −2 < x < 3, and we could plot this by hand (also see the
Maple worksheet).

5. Problem 11: x dx + ye−xdy = 0, y(0) = 1

To solve, first get into a standard form, multiplying by ex, and integrate (integration
by parts for the right hand side):∫

y dy = −
∫

xex dx ⇒ 1

2
y2 = −xex + ex + C

We could solve for the constant before isolating y:

1

2
= 0 + 1 + C C = −1

2

Now solve for y:

y2 = 2ex(x− 1)− 1

2

and take the positive root, since y(0) = +1.

y =
√

2ex(1− x)− 1

The solution exists as long as:

2ex(1− x)− 1 ≥ 0

We use Maple to solve where this is equal to zero (see the Worksheet online). From
that, we see that −1.678 ≤ x ≤ 0.768

6. Problem 14:
dy

dx
= xy3(1 + x2)−1/2 y(0) = 1

Since we’ll divide by y, we look at the case where y = 0. We see that it is a possible
solution, but not for this initial value, therefore, y 6= 0:∫

y−3 dy =
∫ x√

x2 + 1
dx

To integrate the right side of the equation, let u = x2 + 1. Integrating, we get:

−1

2
y−2 =

√
x2 + 1 + C ⇒ 1

y2
= C2 − 2

√
x2 + 1



We could solve for the constant now: 1 = C2 − 2, so C = 3. Solve for y:

y(x) =
1√

3−
√

x2 + 1

where we take the positive root since the initial condition was positive.

The solution will exist as long as the denominator is not zero. Solving,

3− 2
√

x2 + 1 = 0
√

x2 + 1 = 3/2 x = ±
√

5/2

The solution is valid for −
√

5
2

< x <
√

5
2

. See Maple for the plot.

7. Problem 16:
dy

dx
=

x(x2 + 1)

4y3
y(0) = − 1√

2

First, we notice that y 6= 0. Now separate the variables and integrate:

y4 =
1

4
x4 +

1

2
x2 + C

This might be a good time to solve for C: C = 1/4, so:

y4 =
1

4
x4 +

1

2
x2 +

1

4

The right side of the equation seems to be a nice form. Try some algebra to simplify
it:

1

4

(
x4 + 2x2 + 1

)
=

1

4
(x2 + 1)2

Now we can write the solution:

y4 =
1

4
(x2 + 1)2 ⇒ y = − 1√

2

√
x2 + 1

This solution exists for all x (it is the bottom half of a hyperbola- see the Maple plot).

8. Problem 20: y2
√

1− x2dy = sin1(x) dx with y(0) = 1.

To put into standard form, we’ll be dividing so that x 6= ±1. In that case,

∫
y2 dy =

∫ sin−1(x)√
1− x2

dx

The right side of the equation is all set up for a u, du substitution, with u = sin−1(x),
du = 1/

√
x2 − 1 dx:

1

3
y3 =

1

2
(arcsin(x))2 + C



Solve for C, 1
3

= 0 + C so that:

1

3
y3 =

1

2
arcsin2(x) +

1

3

Now,

y(x) =
3

√
3

2
arcsin2(x) + 1

The domain of the inverse sine is: −1 ≤ x ≤ 1. However, we needed to exclude the
endpoints. Therefore, the domain is:

−1 < x < 1

9. Problem 21: I’ll start this off in standard form with a note that says that y 6= 0, y 6= 2.
With these restrictions,∫

(3y2 − 6y) dy = (1 + 3x2) dx ⇒ y3 − 3y2 = x + x3 + C

Solve for C using the initial condition, y(0) = 1: C = −2, and:

y3 − 3y2 = x + x3 − 2

This is a solution in implicit form. We have vertical tangent lines where y = 0 and
y = 2, so we can find the corresponding x values:

0 = x3 + x− 2

By inspection, x = 1 (See Maple to get the full set of solutions). If y = 2, then
−4 = x3 + x− 2, or 0 = x3 + x + 2, and by inspection, x = −1.

Therefore, the solution exists for −1 < x < 1 (See the Maple plot for verification).

10. Problem 25: From what is given, we assume that 3 + 2y 6= 0, and:

y′ =
2 cos(2x)

3 + 2y
⇒ (3 + 2y) dy = 2 cos(2x) dx

Integrate both sides, and use the initial condition y(0) = −1

3y + y2 = sin(2x) + C ⇒ −3 + 1 = 0 + C ⇒ C = −2

The implicit solution is:
y2 + 3y = sin(2x)− 2

We can solve this for y by completing the square:

y2 + 3y =
(
y2 + 3y +

9

4

)
− 9

4
=

(
y +

3

2

)2

− 9

4

so that: (
y +

3

2

)2

= sin(2x) +
1

4
⇒ y = −3

2
+

√
sin(2x) +

1

4

(the positive root was chosen to match the initial condition).



11. Problem 27: First consider the solutions to the ODE,

y′ =
ty(4− y)

3

We see that y(t) = 0 and y(t) = 4 are possible solutions. Otherwise, we can divide by
y(4− y), and get:

1

y(4− y)
dy =

1

3
t dt

Integrate the left side using partial fraction decomposition:

1

y(4− y)
=

1

4
· 1

y
+

1

4
· 1

4− y

Multiply by 4, and integrate:

ln |y| − ln |4− y| = 2

3
t2 + C ⇒ ln

∣∣∣∣∣ y

4− y

∣∣∣∣∣ =
2

3
t2 + C

Therefore,
y

4− y
= Ae(2/3)t2 and

y0

4− y0

= A

Solve for y, where A is shown above:

y(t) =
4Ae(2/3)t2

1 + Ae(2/3)t2

For the dependence of the solution on y0, look at the direction field in Maple. We
should see that y(t) = 0 and y(t) = 4 are indeed solutions. Furthermore, if y0 < 0,
y(t) → −∞ as t → ∞. If y0 = 0, y(t) = 0 for all time. If 0 < y0 < 4, y(t) → 4 as
t → ∞. If y0 = 4, y(t) = 4 for all time. Finally, if y0 > 4, we see that y(t) → 4 as
t →∞.

NOTE: I would accept the above solution for y(t) on a quiz or exam, however, it is
better to simplify it a bit by dividing numerator and denominator by Ae(2/3)t2 .


