Solutions: Section 2.3

A note before we start: Some of these problems require Maple to obtain a numerical solution.
Why were these problems assigned?

There are a couple of critical skills that you need: (i) Be able to take the exact solutions as
far as possible, and know when you cannot solve something, and (ii) Before you turn to the
technology to give a solution, be able to explicitly state the mathematical problem that you
need to solve.

1. Problem 3: In this model of salt in a tank of water, let Q(t) be the amount of salt (in
pounds) at time ¢ (measured in minutes). Then d@/dt will be measured in pounds per
minute.

The rate in, at least initially:
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The rate out, at least initially:
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The model equation, valid for 0 <t < 10:
w_ 1
dt 50

The initial condition is zero, since we started with fresh water. You can solve this
either as a linear equation, or a separable equation. We give the solution here as if it
were linear:

Q QO)=0

0+ 510Q — 1 = 1500 <Q’ n 510Q> — o(1/300t Q(t) = 50 + Cle—(1/50)t
With the initial condition,
0=50+C= C=-50
The amount of salt in the tank at time 0 < ¢ < 10 minutes is:
Q(t) = 50 — 50e~(1/30)¢

At time t = 10, the dynamics change. Suddenly no salt comes in (but water still does).
Now we have:

1
Q = —%Q valid for ¢t > 10

Note: We could have left this as ¢ > 10, but it was convenient to do it this way- That’s
because the initial condition for this DE is where we ended with the last DE,

Q(10) = 50 — 50e/° ~ 9.06343



For ¢ > 10, the solution is: Q(t) = Ae~(/%9 Putting in Q(10) = 9.06343,

9.06343 = Ae” /5 = A~ 1107
Therefore, for t > 10,

Q(t) = 11.07e~ (/501

And now substitute ¢ = 20 to find the final amount of salt in the tank: Q(20) ~ 7.421
pounds.
. Problem 5: As usual, let Q(¢) be the amount of salt (in ounces) at time ¢ (measured
in minutes). Then d@/dt will be measured in ounces per minute.
The rate in:
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The rate out:
gal Q(t) lIbs
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The model equation:
g 1 1 1
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The initial condition was that we started with 50 ozs of salt in a tank of 100 gallons.

This is a linear differential equation, and the integrating factor is the same as computed
earlier in Problem 3:
1

o(1/50)¢ <Q n Q) 2 (1/50)t _|_4e(1/50) sin(?)

Note that we need to integrate by parts twice, so that:

/e(l/5o)t sin(t) dt = —

Now we write the full solution:

625 25 63150
(4 —(1/50)t
o501 “O3) F 5505 500 + Seare

2500 20
ﬁe(’w’o)t cos(t) — ﬁe(’l/m)t sin(t)

SORRY about those constants! Ugly as this might be, it is now easy to see what kind
of behavior we can expect as t — oo- The last term drops out, and the salt varies
periodically about the constant 25 (ozs.).

We can verify this in Maple:



DE:=diff (Q(t),t)+(1/50)*Q(t)=(1/2)+(1/4)*sin(t);
Q1:=dsolve({DE,Q(0)=50},Q(t));
plot(rhs(Q1),t=0..400,numpoints=1000) ;

. Problem 9: In the absence of payments, the rate of change of our loan will increase
proportionally to the current amount. That is, let S(¢) be the amount of money
(measured in dollars) owed at time ¢ (measured in years). With no payments,

as

E:TS

where 7 is the annual interest rate (annual because we are measuring ¢ in years). By
making ”continuous payments”, at a constant annual rate k:

Putting in the values, S(0) = 8000, » = 1/10 and leaving k as an adjustable parameter,
S(t) = 10k — (8000 — 10k) e(1/10)¢
We want to find the value of k so that our loan is paid off in three years, or S(3) = 0:
0 = 10k — (8000 — 10k)e*'®  k ~ 3086.64

(Side remark: That’s about $8.42 per day) So over the three year period, we would

pay:
3-3086.64 = 9259.92

so the interest paid was about $1259.92.

. Problem 12: We are given that:

Q=-rQ = Q)=Quwe ™"

And we are told that the half-life of Carbon-14 is 5730 years. That means that, if ()
is the initial amount, then:

EQO _ Qoe—r~(5730)
2
Divide both sides by )y, and solve for r:

~In(1/2)  In(2)

— — ~ 0.00012097 = 1.2 1074
—r30 ~ 5730 0.00012097 097 x 10




The general solution is:
Q(t) _ Qoe(—1.2907><10_4)t

We now think of )y as some unknown (but fixed) amount, and let 7" be the time it
takes to decrease Qg to 20% of the original amount. Then solve for 7"

EQO _ Qoe(—1.2907x 10-HT
)

This gives T ~ 13, 304.65 years.
5. Problem 13: Let us parse out the problem:

e The population of mosquitoes increases at a rate proportional to the current
population...

If P(t) is the population at time ¢, so far this says

dP
— =kP = P(t) = Pye*
dt
e ... and in the absence of other factors, the population doubles each week. If we

measure ¢ in days, this means that:

In(2)
7

2P, = Pye™ = k= ~ 0.9902 per day

Now, going back to our model: So far, without predation, the rate of change
population at time ¢ (in days) is:

dP  In(2)

= = P
a7

e There are 200,000 mosquitoes initially (Modeled as P(0) = 200,000), and preda-
tors eat 20,000 per day- This is a constant decrease:
dP  In(2)
a7

P — 20,000, P(0) = 200,000

Solve this the usual way (either as a linear or separable equation),

20,000 -7 20,000 -7
P e 2 s —0.9902¢
() ) + < 00, 000 (@) )e

e If ¢ is measured in weeks, then things simplify a bit. In that case, k = In(2) and:

P

— =In(2)P — 140,000 P(0) = 200,000



and the solution to the IVP is:

140,000

PO =m

14
+ <200, 000 — 0, OOO) 27"

In(2)
In numerical form,
P(t) =201,977.31 — 19,77.31 - 27"

Solving for when P(t) = 0, we see that the solution is valid for 0 < t < 6.6745
(weeks).
6. Problem 23:

A Physics Note: If something is measured in pounds, it has the same units as mass
times gravity, mg. Gravity in this problem will be measured as 32 feet per second
squared. Given that the weight is 180 pounds, and gravity is 32, we can then compute
the mass: 180/32 = 5.625.

Going back to our model from Section 1.1:
dv k =
ma =m— =mg — kv — =g— —v
i g 9
Before the parachute opens, 0 <t < 10, we have:

d 3 2
dfzz_ﬁv+32:—1—50+32, v(0) =0

32

Solving for the velocity equation,
v(t) = 240 — 240~ (#/19)!

The speed when the parachute opens (¢ = 10) is v(10) ~ 176.74 feet per second.

We can now integrate velocity to find position, s(t). Careful here! A quick analysis of
our velocity equation says that the velocity towards the ground is positive. But, if we
say that s(0) = 5000, our height will be increasing (since v = s’ > 0). To compensate,
we set s(0) = —5000:

5(t) = —6800 + 240t + 1800~ (2/19)
So the position at t = 10 is s(10) ~ —3925.53, which we interpret as 3925.53 feet above
the ground, so the skydiver has fallen (approximately) 5000 — 3925.53 = 1074.47 feet

To answer the last two questions, we reformulate the velocity equation. To simplify
things, we’ll reset the clock to ¢t = 0 (interpret as minutes past 10):
dv 12

32
32



The “equilibrium” is v(t) = 15 feet per second. Solve this equation to with an “initial
velocity” of 176.74, and:
v(t) = 15 4 161.74e~32/15)¢

Integrate to find position, with “initial position” at —3925.53:

s(t) = 15t — 75.82¢~B2/19) _ 3849 71

To solve for ¢ so that s = 0, we will need Maple. Here are the commands to first get
an estimate, then solve:

S:=15*%t-75.82*exp(-(32/15) *t)-3849.71;
plot(S,t=0..260);
fsolve(S=0,t=250..260);

and we get that t =~ 256.6473333 seconds, or about 4.3 minutes.

. Problem 28: From what is given in the problem, we’ll use our standard model:

with g = 9.8 meters per seconds squared, k£ = 0.2 = %, and m = 0.25 = i. Therefore,

dv 4

and, with the initial condition v(0) = 0, we have:
v(t) = 12.25 — 12.25¢~W/!
We can now get position at time ¢, with the initial position —30:
s(t) = —45.31 + 12.25t + 15.31e~#/)!

We can now answer the first question, with a little Maple. To find the velocity when
the ball hits the ground, we need to find the time at which this happens. Set s(¢) =0
and solve for t. The Maple commands are:

S:=-45.31+12.25%t+15.31*exp (- (4/5) *t) ;
plot(S,t=0..5);
fsolve(S=0,t=3..4);

From this, t = 3.63 seconds. Substitute this into velocity:

v(3.63) ~ 11.58



For part (b), we want the velocity to be no more than 10 meters per second (what is
the maximum height from which the ball can be dropped)? First, look at the velocity:

v(t) = 12.25 — 12.25e~W/5)

This is an increasing function (look at the plot in Maple, or consider that the derivative
is positive). Therefore, we will find the time it takes for the velocity to reach 10 meters

per second.
v(t) = 10 = 12.25 — 12.25¢- 4/ = 10

Solve for t and get about ¢t = 2.1182.
Now, look at the height function, s(t), where s(0) = Sp:

s(t) = 12.25t 4 15.31e~ W/ 4 (S, — 15.31)

We want to find Sy so that s(2.1182) = 0. Substitute this value of ¢ in and solve for
So. You should find that Sy ~ —13.45.

For part (c), we will need to use Maple, but let’s see how far we can go before we need
it: First we’ll need velocity and position in terms of k:

d
dfi — 98— (4kv  v(0)=0
so that the solution in terms of k is:
98 98
o= T

The position at time ¢ (with s(0) = —30) is:

0.8 98 . ( 9.8)
= 22 — (30
s(t) = 0 g T

We now need to solve for k so that, when the ball hits the ground, the velocity is no
more than 10. Let tx be the time when the ball hits the ground- It too depends on k.
Therefore, we have two equations in two unknowns (the unknowns are k and t*):

98 98 ..
t*) =10 S e =0
v(#") ik Ak’
and 98 08 9.8
*\ . t* . —4kt* _ < : > —
() =0 = e 30+ 15) =0

To solve this system of equations in Maple, we’ll first define them, then plot the curves
(to solve these numerically, we’ll need to give Maple an approximate solution). Once
we see the point of intersection, then Maple will solve it:



Eqn1:=(9.8/(4xk))-(9.8/(4xk) ) *exp(-4*k*t)=10;
Eqn2:=(9.8/(4xk))*t+(9.8/(16%k"2) ) *exp (-4*k+*t)-(30+(9.8/ (16xk"2)))=0;
with(plots):

implicitplot ({Eqnl,Eqn2},k=0.1..1,t=0.1..5);

fsolve ({Eqnl,Eqn2},{k,t},{k=0.2..0.25,t=3..5});

Maple gives the solution as:
{k = .2394381624, t = 3.952304030}

So we conclude that, if & > 0.2394, then the ball will hit the ground with a velocity of
at most 10 meters per second.



