Solutions: Section 2.5

NOTE: Some of the graphs will be put online as images rather than PDF text.

1. Problem 1: Given $\frac{d y}{d t}=a y+b y^{2}=y(a+b y)$ with $a, b>0$. For the more general case, we will let y_{0} be any real number.
Always look for the equilibria first! In this case,

$$
y(a+b y)=0 \quad \Rightarrow \quad y=0 \text { or } y=-b / a
$$

To make the phase plot (graph of y^{\prime} versus y), we note that $a y+b y^{2}$ is a parabola opening upwards, and it intersects the y-axis at the equilibria, $y=0$ and $y=-b / a$. From this graph, we see that $y=0$ is an unstable equilibrium, and $y=-b / a$ is stable.
2. Problem 3: Given $\frac{d y}{d t}=y(y-1)(y-2)$, and let y_{0} be any real number (the more general case).
Then the phase plot is a cubic function going through the equilibria at $y=0, y=1$, $y=2$. See the graph online.
3. Problem 7: With the DE,

$$
\frac{d y}{d t}=k(1-y)^{2}
$$

the only equilibrium solution is: $k(1-y)^{2}=0 \Rightarrow y=1$. Graphing this as y^{\prime} versus y, we get an upward parabola whose vertex is lying on the y-axis at $y=1$.
For part (b), see the graph online.
For part (c), the DE is separable:

$$
\int \frac{1}{(1-y)^{2}} d y=\int k d t \quad \Rightarrow \quad \frac{1}{1-y}=k t+C
$$

(Use $u, d u$ substitution for the integral on the left side of the equation). At this stage, we might as well solve for the arbitrary constant:

$$
\frac{1}{1-y_{0}}=0+C
$$

This is valid as long as $y_{0} \neq 1$. In the case that $y_{0}=1$, the solution is $y(t)=1$ (the equilibrium solution).
Solving for y,

$$
1-y=\frac{1}{k t+C} \Rightarrow y=1-\frac{1}{k t+\frac{1}{1-y_{0}}}
$$

Let us analyze this last equation: If $\frac{1}{1-y_{0}}>0$, then as $t \rightarrow \infty, k t+\frac{1}{1-y_{0}} \rightarrow \infty$, so $y(t) \rightarrow 1$. Therefore, if $y_{0}<1, y(t) \rightarrow 1$ as $t \rightarrow \infty$ (as expected from the phase plot and direction field).

On the other hand, consider the case when $y_{0}>1$ (the case when $y_{0}=1$ gave an equilibrium solution). In this case, $\frac{1}{1-y_{0}}$ is negative, which means that there will be a vertical asymptote in positive time,

$$
t=-\frac{1}{k\left(1-y_{0}\right)}
$$

From our phase plot, we expect solutions with $y_{0}>1$ to go to $+\infty$ - Does that occur algebraically?

$$
y(t)=1-\frac{1}{k t+\frac{1}{1-y_{0}}}=1-\frac{\frac{1}{k}}{t+\frac{1}{k\left(1-y_{0}\right)}}
$$

so we see that the denominator is approaching zero from the left, so that $y(t) \rightarrow+\infty$ as $t \rightarrow-1 /\left(k\left(1-y_{0}\right)\right)$ from the left.
4. Problem 8, 10, 11: These are all done graphically- See the attachments online.
5. Problem 22: Please be sure to read the description carefully- Nice intro to epidemiology.
(a) The equilibria are at $y=0$ and $y=1$. The phase plot of $y^{\prime}=\alpha y(1-y)$ is a parabola opening downward. A sketch of the phase plot shows that $y=0$ is unstable and $y=1$ is stable.
(b) To solve this, we'll need to use partial fraction decomposition:

$$
\frac{1}{y(1-y)} d y=\alpha d t \Rightarrow \int \frac{1}{y}+\frac{1}{1-y} d y=\alpha t+C \Rightarrow \ln |y|-\ln |1-y|=\alpha t+C
$$

so that

$$
\ln \left|\frac{y}{1-y}\right|=\alpha t+C \Rightarrow \frac{y}{1-y}=A \mathrm{e}^{\alpha t}
$$

Solving for $A, y_{0} /\left(1-y_{0}\right)=A$. Keep this in mind, and let's solve for y first:

$$
y(t)=\frac{A \mathrm{e}^{\alpha t}}{1+A \mathrm{e}^{\alpha t}}
$$

We will want to analyze what happens as $t \rightarrow \infty$, so it will be more convenient to divide numerator and denominator by $A \mathrm{e}^{\alpha t}$:

$$
y(t)=\frac{1}{\frac{1}{A} \mathrm{e}^{-\alpha t}+1}=\frac{1}{\frac{1-y_{0}}{y_{0}} \mathrm{e}^{-\alpha t}+1}
$$

This solution is valid as long as $y_{0} \neq 0$ and $y_{0} \neq 1$. In those cases, our solutions are the equilibrium solutions, $y(t)=0$ and $y(t)=1$. Now let us analyze the behavior of $y(t)$.
We see that, as $t \rightarrow \infty, y(t) \rightarrow 1$. But this is not the end of the story: If a solution begins with $y_{0}<0$, for example, we know that the solution CANNOT
approach 1 as $t \rightarrow \infty$, because that would mean it would have to $\operatorname{cross} y(t)=0$ (and solutions cannot intersect by the E\& U Theorem).

The following is a much more detailed analysis than what was expected in the homework problem- However, read through it to see exactly what the behavior of all solutions looks like.

The only point that makes us pause is the denominator. Set it to zero and solve:

$$
\frac{1-y_{0}}{y_{0}} \mathrm{e}^{-\alpha t}=-1 \quad \Rightarrow \quad \mathrm{e}^{-\alpha t}=\frac{y_{0}}{y_{0}-1} \quad \Rightarrow \quad t=-\frac{1}{\alpha} \cdot \ln \left(\frac{y_{0}}{y_{0}-1}\right)
$$

Alternatively,

$$
t=\frac{1}{\alpha} \cdot \ln \left(\frac{y_{0}-1}{y_{0}}\right)=\frac{1}{\alpha} \cdot \ln \left(1-\frac{1}{y_{0}}\right)
$$

The reason this is a nice way of analyzing t :

- If $y_{0}>1$, then we will be taking the log of a number less than 1 (which gives a negative value). In this case, t is negative and our solution $y(t)$ is valid for all $t>(1 / \alpha) \ln \left(1-\left(1 / y_{0}\right)\right)$, and $y(t) \rightarrow 1$ as $t \rightarrow \infty$.
- If $0<y_{0}<1$, this denominator is never zero (no solution for t in the real numbers). In this case, $y(t)$ is valid for ALL t (not just positive), and again the limit as $t \rightarrow \infty$ is 1 .
- If $y_{0}<0$, then the solution is valid for:

$$
-\infty<t<\frac{1}{\alpha} \ln \left(1-\frac{1}{y_{0}}\right)
$$

so that $y(t)$ has a vertical asymptote on the positive t axis. In this case, it is not appropriate to take the limit as $t \rightarrow \infty$.
6. Problem 23:

First solve $y^{\prime}=-\beta y$, which is $y(t)=y_{0} \mathrm{e}^{-\beta t}$.
NOTE: There is a misprint in Problem 23, in defining $d x / d t$. The disease spreads (or INCREASES) at a rate proportional to the number of carrier-susceptible interactions ($x-$ and y - interactions), which means that the constant in front should be POSITIVE.

We are told to substitute this into the DE :

$$
\frac{d x}{d t}=+\alpha x y=\alpha x\left(y_{0} \mathrm{e}^{-\beta t}\right)
$$

Solve this separable equation for $x(t)$:

$$
\int \frac{1}{x} d x=\alpha y_{0} \int \mathrm{e}^{-\beta t} d t \Rightarrow \ln |x|=\frac{-\alpha \cdot y_{0}}{\beta} \mathrm{e}^{-\beta t}+C
$$

Solving for the initial value,

$$
C=\ln \left|x_{0}\right|+\frac{\alpha \cdot y_{0}}{\beta}
$$

so that:

$$
\ln |x|=\frac{\alpha \cdot y_{0}}{\beta}\left(1-\mathrm{e}^{-\beta t}\right)+\ln \left|x_{0}\right|
$$

Finally, exponentiating both sides:

$$
x(t)=x_{0} \mathrm{e}^{\frac{\alpha \cdot y_{0}}{\beta}\left(1-\mathrm{e}^{-\beta t}\right)}
$$

And the limit as $t \rightarrow \infty$ of $x(t)$ is $x_{0} \mathrm{e}^{\frac{\alpha \cdot y_{0}}{\beta}}$
7. Problem 25: The basic idea behind problems 25 and 26 is that there is a new parameter, a. By changing this parameter, we can change the number and type of the equilibrium solutions.
In Problem 25, the equilibrium solutions are given by:

$$
\frac{d y}{d t}=0 \Rightarrow a-y^{2}=0 \quad \Rightarrow \quad y= \pm \sqrt{a}
$$

Graphically in the phase plot, $y^{\prime}=-y^{2}$ is an upside down parabola, and $-y^{2}+a$ simply translates the parabola up and down.
Therefore, in words:

- If $a<0$, we have no equilibrium solutions.
- If $a=0$, we have a single equilibrium solution at $a=0$, and it is semistable. Since y^{\prime} is always negative (and zero at $y=0$), in the direction field, solutions that begin above $y_{0}=0$ decrease to zero, and solutions that begin below $y_{0}=0$ decrease to negative infinity.
- If $a>0$, we have two equilibrium solutions (at \sqrt{a} and $-\sqrt{a}$). The positive root is a stable equilibrium, and the negative root is an unstable equilibrium.

We can summarize this graphically in Figure 2.5.10 on page 93.
8. Problem 26: Finding the equilibrium:

$$
y\left(a-y^{2}\right)=0
$$

We see that $y(t)=0$ is ALWAYS an equilibrium solution for any value of a. The other solutions will be the same as before (we'll have to re-do our stability analysis):

- If $a<0$, the only equilibrium is $y(t)=0$, and this is stable.
- If $a=0$, same situation.
- If $a>0$, two new equilibria appear, $y(t)= \pm \sqrt{a}$. Now, $y(t)=0$ switches stability (it is now unstable), and the two new equilibria, $y(t)= \pm \sqrt{a}$ are both stable.

