
Solutions: Section 2.5

NOTE: Some of the graphs will be put online as images rather than PDF text.

1. Problem 1: Given dy
dt

= ay + by2 = y(a + by) with a, b > 0. For the more general case,
we will let y0 be any real number.

Always look for the equilibria first! In this case,

y(a + by) = 0 ⇒ y = 0 or y = −b/a

To make the phase plot (graph of y′ versus y), we note that ay + by2 is a parabola
opening upwards, and it intersects the y−axis at the equilibria, y = 0 and y = −b/a.
From this graph, we see that y = 0 is an unstable equilibrium, and y = −b/a is stable.

2. Problem 3: Given dy
dt

= y(y−1)(y−2), and let y0 be any real number (the more general
case).

Then the phase plot is a cubic function going through the equilibria at y = 0, y = 1,
y = 2. See the graph online.

3. Problem 7: With the DE,
dy

dt
= k(1− y)2

the only equilibrium solution is: k(1− y)2 = 0 ⇒ y = 1. Graphing this as y′ versus y,
we get an upward parabola whose vertex is lying on the y−axis at y = 1.

For part (b), see the graph online.

For part (c), the DE is separable:∫ 1

(1− y)2
dy =

∫
k dt ⇒ 1

1− y
= kt + C

(Use u, du substitution for the integral on the left side of the equation). At this stage,
we might as well solve for the arbitrary constant:

1

1− y0

= 0 + C

This is valid as long as y0 6= 1. In the case that y0 = 1, the solution is y(t) = 1 (the
equilibrium solution).

Solving for y,

1− y =
1

kt + C
⇒ y = 1− 1

kt + 1
1−y0

Let us analyze this last equation: If 1
1−y0

> 0, then as t → ∞, kt + 1
1−y0

→ ∞, so

y(t) → 1. Therefore, if y0 < 1, y(t) → 1 as t → ∞ (as expected from the phase plot
and direction field).



On the other hand, consider the case when y0 > 1 (the case when y0 = 1 gave an
equilibrium solution). In this case, 1

1−y0
is negative, which means that there will be a

vertical asymptote in positive time,

t = − 1

k(1− y0)

From our phase plot, we expect solutions with y0 > 1 to go to +∞- Does that occur
algebraically?

y(t) = 1− 1

kt + 1
1−y0

= 1−
1
k

t + 1
k(1−y0)

so we see that the denominator is approaching zero from the left, so that y(t) → +∞
as t → −1/(k(1− y0)) from the left.

4. Problem 8, 10, 11: These are all done graphically- See the attachments online.

5. Problem 22: Please be sure to read the description carefully- Nice intro to epidemiology.

(a) The equilibria are at y = 0 and y = 1. The phase plot of y′ = αy(1 − y) is
a parabola opening downward. A sketch of the phase plot shows that y = 0 is
unstable and y = 1 is stable.

(b) To solve this, we’ll need to use partial fraction decomposition:

1

y(1− y)
dy = α dt ⇒

∫ 1

y
+

1

1− y
dy = αt + C ⇒ ln |y| − ln |1− y| = αt + C

so that

ln

∣∣∣∣∣ y

1− y

∣∣∣∣∣ = αt + C ⇒ y

1− y
= Aeαt

Solving for A, y0/(1− y0) = A. Keep this in mind, and let’s solve for y first:

y(t) =
Aeαt

1 + Aeαt

We will want to analyze what happens as t → ∞, so it will be more convenient
to divide numerator and denominator by Aeαt:

y(t) =
1

1
A
e−αt + 1

=
1

1−y0

y0
e−αt + 1

This solution is valid as long as y0 6= 0 and y0 6= 1. In those cases, our solutions
are the equilibrium solutions, y(t) = 0 and y(t) = 1. Now let us analyze the
behavior of y(t).

We see that, as t → ∞, y(t) → 1. But this is not the end of the story: If a
solution begins with y0 < 0, for example, we know that the solution CANNOT



approach 1 as t → ∞, because that would mean it would have to cross y(t) = 0
(and solutions cannot intersect by the E& U Theorem).

The following is a much more detailed analysis than what was expected in the
homework problem- However, read through it to see exactly what the behavior of
all solutions looks like.

The only point that makes us pause is the denominator. Set it to zero and solve:

1− y0

y0

e−αt = −1 ⇒ e−αt =
y0

y0 − 1
⇒ t = − 1

α
· ln

(
y0

y0 − 1

)

Alternatively,

t =
1

α
· ln

(
y0 − 1

y0

)
=

1

α
· ln

(
1− 1

y0

)
The reason this is a nice way of analyzing t:

• If y0 > 1, then we will be taking the log of a number less than 1 (which gives
a negative value). In this case, t is negative and our solution y(t) is valid for
all t > (1/α) ln(1− (1/y0)), and y(t) → 1 as t →∞.

• If 0 < y0 < 1, this denominator is never zero (no solution for t in the real
numbers). In this case, y(t) is valid for ALL t (not just positive), and again
the limit as t →∞ is 1.

• If y0 < 0, then the solution is valid for:

−∞ < t <
1

α
ln

(
1− 1

y0

)

so that y(t) has a vertical asymptote on the positive t axis. In this case, it is
not appropriate to take the limit as t →∞.

6. Problem 23:

First solve y′ = −βy, which is y(t) = y0e
−βt.

NOTE: There is a misprint in Problem 23, in defining dx/dt. The disease
spreads (or INCREASES) at a rate proportional to the number of carrier-susceptible
interactions (x− and y− interactions), which means that the constant in front should
be POSITIVE.

We are told to substitute this into the DE:

dx

dt
= +αxy = αx

(
y0e

−βt
)



Solve this separable equation for x(t):∫ 1

x
dx = αy0

∫
e−βt dt ⇒ ln |x| = −α · y0

β
e−βt + C

Solving for the initial value,

C = ln |x0|+
α · y0

β

so that:
ln |x| = α · y0

β

(
1− e−βt

)
+ ln |x0|

Finally, exponentiating both sides:

x(t) = x0e
α·y0

β (1−e−βt)

And the limit as t →∞ of x(t) is x0e
α·y0

β

7. Problem 25: The basic idea behind problems 25 and 26 is that there is a new parameter,
a. By changing this parameter, we can change the number and type of the equilibrium
solutions.

In Problem 25, the equilibrium solutions are given by:

dy

dt
= 0 ⇒ a− y2 = 0 ⇒ y = ±

√
a

Graphically in the phase plot, y′ = −y2 is an upside down parabola, and −y2 + a
simply translates the parabola up and down.

Therefore, in words:

• If a < 0, we have no equilibrium solutions.

• If a = 0, we have a single equilibrium solution at a = 0, and it is semistable.
Since y′ is always negative (and zero at y = 0), in the direction field, solutions
that begin above y0 = 0 decrease to zero, and solutions that begin below y0 = 0
decrease to negative infinity.

• If a > 0, we have two equilibrium solutions (at
√

a and −
√

a). The positive root
is a stable equilibrium, and the negative root is an unstable equilibrium.

We can summarize this graphically in Figure 2.5.10 on page 93.

8. Problem 26: Finding the equilibrium:

y(a− y2) = 0

We see that y(t) = 0 is ALWAYS an equilibrium solution for any value of a. The other
solutions will be the same as before (we’ll have to re-do our stability analysis):



• If a < 0, the only equilibrium is y(t) = 0, and this is stable.

• If a = 0, same situation.

• If a > 0, two new equilibria appear, y(t) = ±
√

a. Now, y(t) = 0 switches stability
(it is now unstable), and the two new equilibria, y(t) = ±

√
a are both stable.


