Selected Solutions: 3.2

1. Problem 16, 3.2: We are told that $y=\sin \left(t^{2}\right)$ is a solution- Substitute it into the DE to determine $p(t)$ and $q(t)$:

$$
y=\sin \left(t^{2}\right) \quad y^{\prime}=2 t \cos \left(t^{2}\right) \quad y^{\prime \prime}=2 \cos \left(t^{2}\right)-4 t^{2} \sin \left(t^{2}\right)
$$

Substituting into $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, we get:

$$
\begin{array}{rlc}
y^{\prime \prime} & =2 \cos \left(t^{2}\right) & -4 t^{2} \sin \left(t^{2}\right) \\
p(t) y^{\prime} & =p(t) 2 t \cos \left(t^{2}\right) & \\
q(t) y & = & q(t) \sin \left(t^{2}\right) \\
\hline 0 & =(2+2 t p(t)) \cos \left(t^{2}\right) & +\left(q(t)-4 t^{2}\right) \sin \left(t^{2}\right)
\end{array}
$$

Therefore, if $\sin \left(t^{2}\right)$ was a solution, $p(t)=\frac{-1}{t}$ and $q(t)=4 t^{2}$. However, this would make $p(t)$ not continuous at $t=0$.
2. Problem 18, Sect 3.2:

We're given the Wronskian and a function $f(t)=t$. Find the function g :

$$
W(f, g)(t)=\left|\begin{array}{ll}
t & g(t) \\
1 & g^{\prime}(t)
\end{array}\right|=t^{\prime}(t)-g(t)=t^{2} \mathrm{e}^{t}
$$

That is a linear differential equation in g :

$$
g^{\prime}(t)-\frac{1}{t} g(t)=t \mathrm{e}^{t}
$$

The integrating factor: $\mathrm{e}^{-\int(1 / t) d t}=\frac{1}{t}$, so:

$$
\left(\frac{g(t)}{t}\right)^{\prime}=\mathrm{e}^{t} \quad \Rightarrow \quad g(t) / t=\mathrm{e}^{t}+C \quad \Rightarrow \quad g(t)=t\left(\mathrm{e}^{t}+C\right)
$$

3. Problem 22, Section 3.2: Find the fundamental set (Theorem 3.2.5) if $y^{\prime \prime}+4 y^{\prime}+3 y=0$. We know the general solution is $C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-3 t}$. In Theorem 3.2.5, we construct two solutions that are guaranteed to form a fundamental set:

- y_{1} solves the ODE with initial conditions $y(1)=1, y^{\prime}(1)=0$:

$$
\begin{aligned}
C_{1} \mathrm{e}^{-1}+C_{2} \mathrm{e}^{-3} & =1 \\
-C_{1} \mathrm{e}^{-1}-3 C_{2} \mathrm{e}^{-3} & =0
\end{aligned} \Rightarrow C_{1}=\frac{3}{2} \mathrm{e}, C_{2}=-\frac{1}{2} \mathrm{e}^{3}
$$

Therefore, $y_{1}(t)=\frac{3 \mathrm{e}}{2} \mathrm{e}^{-t}-\frac{\mathrm{e}^{3}}{2} \mathrm{e}^{-3 t}$.

- Similarly, y_{2} solves the ODE with I.C.s: $y(1)=0, y^{\prime}(1)=1$:

$$
\begin{aligned}
C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-3} & =0 \\
C_{1} \mathrm{e}^{-1}-3 C_{2} \mathrm{e}^{-3} & =1
\end{aligned} \Rightarrow C_{1}=\frac{\mathrm{e}}{2}, C_{2}=-\frac{\mathrm{e}^{3}}{2}
$$

Therefore, $y_{2}(t)=\frac{\mathrm{e}}{2} \mathrm{e}^{-t}-\frac{\mathrm{e}^{3}}{2} \mathrm{e}^{-3 t}$
Even though y_{1} and y_{2} look a lot alike, Theorem 3.2.5 guarantees that they are linearly independent, and that they form a fundamental set.
Note that Theorem 3.2.5 is more of a formal result than something we would actually compute with- However, it does give conditions on which we can always guarantee that we can find a fundamental set of solutions.
4. Problem 26, Section 3.2: The verification is straightforward.

Before we consider the question of whether we have a fundamental set, look at where the solutions would be valid.
We will have a discontinuity of p, q, g at the x-values where:

$$
1-x \cot (x)=0 \quad \Rightarrow \quad x \cot (x)=1 \quad \Rightarrow \quad x \frac{\cos (x)}{\sin (x)}=1 \quad \Rightarrow \quad x \cos (x)=\sin (x)
$$

Therefore, existence and uniqueness is only guaranteed on intervals which avoid these points.
Going to the original question, does x and $\sin (x)$ constitute a fundamental set? Look at the Wronskian:

$$
W(x, \sin (x))=\left|\begin{array}{cc}
x & \sin (x) \\
1 & \cos (x)
\end{array}\right|=x \cos (x)-\sin (x)
$$

This looks very familiar! The Wronskian will be non-zero for intervals which also satisfy the existence and uniqueness theorem.
Finally, is the given interval one such example? The expression will not be zero on $0<x<\pi$ (check this graphically).
5. Problem 27, Section 3.2: Just a couple of notes here. You should find that y_{1}, y_{3} do form a fundamental set; y_{2}, y_{3} do NOT form a fundamental set.
To show that y_{1}, y_{4} do form a fundamental set, notice that, since y_{1}, y_{2} do form a fundamental set,

$$
y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \neq 0 \text { at } t_{0}
$$

Now form the Wronskian between y_{1} and y_{4} :

$$
W\left(y_{1}, y_{4}\right)=\left|\begin{array}{cc}
y_{1} & y_{1}+2 y_{2} \\
y_{1}^{\prime} & y_{1}^{\prime}+2 y_{2}^{\prime}
\end{array}\right|=y_{1} y_{1}^{\prime}+2 y_{1} y_{2}^{\prime}-y_{1} y_{1}^{\prime}-2 y_{1}^{\prime} y_{2}=2 W\left(y_{1}, y_{2}\right) \neq 0
$$

The last set, y_{4}, y_{5} does NOT form a fundamental set. You can show that $y_{4}=y_{1}+2 y_{2}$, and $y_{5}=2 y_{4}$.

