Selected Problems from Section 3.4

- 1. Problem 25. Let y'' + 2y' + 6y = 0 with y(0) = 2 and $y'(0) = \alpha \ge 0$.
 - (a) Solve it: The characteristic equation is $r^2 + 2r + 6 = 0$. Therefore, $r = -1 \pm \sqrt{5}i$ and the general solution is:

$$y(t) = e^{-t} \left(C_1 \cos(\sqrt{5}t) + C_2 \sin(\sqrt{5}t) \right)$$

With the initial conditions, find that $C_1 = 2$ and $C_2 = \frac{\alpha+2}{\sqrt{5}}$, so that the solution to the IVP is:

$$y(t) = e^{-t} \left(2\cos(\sqrt{5}t) + \frac{\alpha+2}{\sqrt{5}}\sin(\sqrt{5}t) \right)$$

(b) Find α so that y(1) = 0: Algebraically, we get:

$$-2\sqrt{5}\,\frac{\cos(\sqrt{5})}{\sin(\sqrt{5})} - 2 = \alpha$$

(c) Find the smallest value of t > 0 so that y(t) = 0. We'll write our answer as a function of α . Algebraically, solving this:

$$0 = e^{-t} \left(2\cos(\sqrt{5}t) + \frac{\alpha+2}{\sqrt{5}}\sin(\sqrt{5}t) \right)$$

will get us to:

$$\frac{-2\cos(\sqrt{5}t)}{\sin(\sqrt{5}t)} = \frac{\alpha+2}{\sqrt{5}}$$

We want to solve this for t, remembering that we want the smallest t > 0. I think it is easiest to work with the tangent rather than the cotangent,

$$\tan(\sqrt{5}\,t) = \frac{-2\sqrt{5}}{\alpha+2}$$

Now consider the graph of $\tan(\sqrt{5}t)$. It looks much like tangent, except that it is periodic with period $\pi/\sqrt{5}$.

If we consider the graph of $\tan(\sqrt{5}t)$, as shown in Maple in Figure 1, we see that solving directly for t:

$$t = \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{-2\sqrt{5}}{\alpha + 2} \right)$$

will put us one period $(\pi/\sqrt{5})$ short. Therefore, the full solution is:

$$t = \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{-2\sqrt{5}}{\alpha + 2} \right) + \frac{\pi}{\sqrt{5}}$$

Figure 1: Plot of $tan(\sqrt{5}t)$ and a sample value of $-2\sqrt{5}/(\alpha + 2)$ marked as A. Using the standard restriction (so that the tangent is invertible), we see that we are one period too short- Add one period to get the actual solution.

Taking the limit as $\alpha \to \infty$, we get that $t = \pi/\sqrt{5}$. NOTE: The inverse tangent is an odd function, so one could write the solution as:

$$t = \frac{\pi}{\sqrt{5}} - \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{2\sqrt{5}}{\alpha + 2}\right)$$

2. Problem 29:

Using Euler's Formula and noting that

$$e^{-i\theta} = \cos(-\theta) + i\sin(-\theta) = \cos(\theta) - i\sin(\theta)$$

we can simplify the following:

$$e^{it} + e^{-it} = \cos(t) + i\sin(t) + \cos(t) - i\sin(t) = 2\cos(t)$$

and

$$e^{it} - e^{-it} = \cos(t) + i\sin(t) - \cos(t) + i\sin(t) = 2i\sin(t)$$

3. Problem 32: Differentiate expressions in i as if i is a constant (it is a constant):

If $\phi = u + iv$, then $\phi' = u' + iv'$ and $\phi'' = u'' + iv''$. Therefore, substituting this into the differential equation, we get:

$$(u'' + iv'') + p(t)(u' + iv') + q(t)(u + iv) = 0$$

Separate into real and imaginary components:

$$(u'' + p(t)u' + q(t)u) + i(v'' + p(t)v' + q(t)v) = 0$$

We note that if a + ib = 0, then a = 0 and b = 0. Apply this principle to the above equation so that

$$u'' + p(t)u' + q(t)u = 0$$
 and $v'' + p(t)v' + q(t)v = 0$

Therefore, u(t) and v(t) must separately solve the homogeneous second order linear differential equation.