Selected Problems from Section 3.4

1. Problem 25. Let $y^{\prime \prime}+2 y^{\prime}+6 y=0$ with $y(0)=2$ and $y^{\prime}(0)=\alpha \geq 0$.
(a) Solve it: The characteristic equation is $r^{2}+2 r+6=0$. Therefore, $r=-1 \pm \sqrt{5} i$ and the general solution is:

$$
y(t)=\mathrm{e}^{-t}\left(C_{1} \cos (\sqrt{5} t)+C_{2} \sin (\sqrt{5} t)\right)
$$

With the initial conditions, find that $C_{1}=2$ and $C_{2}=\frac{\alpha+2}{\sqrt{5}}$, so that the solution to the IVP is:

$$
y(t)=\mathrm{e}^{-t}\left(2 \cos (\sqrt{5} t)+\frac{\alpha+2}{\sqrt{5}} \sin (\sqrt{5} t)\right)
$$

(b) Find α so that $y(1)=0$: Algebraically, we get:

$$
-2 \sqrt{5} \frac{\cos (\sqrt{5})}{\sin (\sqrt{5})}-2=\alpha
$$

(c) Find the smallest value of $t>0$ so that $y(t)=0$. We'll write our answer as a function of α.
Algebraically, solving this:

$$
0=\mathrm{e}^{-t}\left(2 \cos (\sqrt{5} t)+\frac{\alpha+2}{\sqrt{5}} \sin (\sqrt{5} t)\right)
$$

will get us to:

$$
\frac{-2 \cos (\sqrt{5} t)}{\sin (\sqrt{5} t)}=\frac{\alpha+2}{\sqrt{5}}
$$

We want to solve this for t, remembering that we want the smallest $t>0$. I think it is easiest to work with the tangent rather than the cotangent,

$$
\tan (\sqrt{5} t)=\frac{-2 \sqrt{5}}{\alpha+2}
$$

Now consider the graph of $\tan (\sqrt{5} t)$. It looks much like tangent, except that it is periodic with period $\pi / \sqrt{5}$.
If we consider the graph of $\tan (\sqrt{5} t)$, as shown in Maple in Figure 1 , we see that solving directly for t :

$$
t=\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{-2 \sqrt{5}}{\alpha+2}\right)
$$

will put us one period $(\pi / \sqrt{5})$ short. Therefore, the full solution is:

$$
t=\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{-2 \sqrt{5}}{\alpha+2}\right)+\frac{\pi}{\sqrt{5}}
$$

Figure 1: Plot of $\tan (\sqrt{5} t)$ and a sample value of $-2 \sqrt{5} /(\alpha+2)$ marked as A. Using the standard restriction (so that the tangent is invertible), we see that we are one period too short- Add one period to get the actual solution.

Taking the limit as $\alpha \rightarrow \infty$, we get that $t=\pi / \sqrt{5}$.
NOTE: The inverse tangent is an odd function, so one could write the solution as:

$$
t=\frac{\pi}{\sqrt{5}}-\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{5}}{\alpha+2}\right)
$$

2. Problem 29:

Using Euler's Formula and noting that

$$
\mathrm{e}^{-i \theta}=\cos (-\theta)+i \sin (-\theta)=\cos (\theta)-i \sin (\theta)
$$

we can simplify the following:

$$
\mathrm{e}^{i t}+\mathrm{e}^{-i t}=\cos (t)+i \sin (t)+\cos (t)-i \sin (t)=2 \cos (t)
$$

and

$$
\mathrm{e}^{i t}-\mathrm{e}^{-i t}=\cos (t)+i \sin (t)-\cos (t)+i \sin (t)=2 i \sin (t)
$$

3. Problem 32: Differentiate expressions in i as if i is a constant (it is a constant):
If $\phi=u+i v$, then $\phi^{\prime}=u^{\prime}+i v^{\prime}$ and $\phi^{\prime \prime}=u^{\prime \prime}+i v^{\prime \prime}$. Therefore, substituting this into the differential equation, we get:

$$
\left(u^{\prime \prime}+i v^{\prime \prime}\right)+p(t)\left(u^{\prime}+i v^{\prime}\right)+q(t)(u+i v)=0
$$

Separate into real and imaginary components:

$$
\left(u^{\prime \prime}+p(t) u^{\prime}+q(t) u\right)+i\left(v^{\prime \prime}+p(t) v^{\prime}+q(t) v\right)=0
$$

We note that if $a+i b=0$, then $a=0$ and $b=0$. Apply this principle to the above equation so that

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=0 \quad \text { and } \quad v^{\prime \prime}+p(t) v^{\prime}+q(t) v=0
$$

Therefore, $u(t)$ and $v(t)$ must separately solve the homogeneous second order linear differential equation.

