
Solutions to Selected Problems, 3.8

1. In problems 1-4, the only tricky part is to get δ. Recall that we want a four-quadrant
inverse tangent.

(a) Problem 1: The point (3, 4) is in the first quadrant, so

R =
√

9 + 16 = 5 δ = tan−1(4/3) ≈ 0.9273 rad

(b) Problem 2: The point (−1,
√

3) is in the second quadrant, so:

R =
√

1 + 3 = 2 δ = tan−1(−
√

3) + π = −π/3 + π = 2π/3

(c) Problem 3: The point (4,−2) is in the fourth quadrant, so:

R =
√

16 + 4 = 2
√

5 δ = tan−1(−1/2) ≈ −0.4636 rad

2. Problem 6: Note that there may be some confusion over which units to use. On
quizzes/exams, we will always use the standard units of meters, kilograms and seconds,
or feet, pounds and seconds.

The constants in this problem (the spring constant is found using the relation: mg −
kL = 0, or k = mg/L):

• Mass: 100 grams or 0.1 kg

• Gravity: 9.8 meters/second2

• Length: 5 cm or 0.05 meters

• Spring constant: k = (9.8)(0.1)/0.05 = 19.6

• The initial velocity: 10 cm or 0.1 meters

So, using meters, kg, seconds:

0.1u′′ + 19.6u = 0 or u′′ + 196u = 0 r = 14

u = C1 cos(14t) + C2 sin(14t) u(0) = 0 u′(0) = 0.1

so that

u =
1

140
sin(14t) in meters, or

5

7
sin(14t) cm

In either case, the time (in seconds) to equilibrium:

sin(14t) = 0 ⇒ 14t = 0, π, 2π, . . .

We want the first time we return to equilibrium, so 14t = π, or t = π/14.



3. Problem 12: From the discussion on P. 201-202, we have:

LQ′′ + RQ′ +
1

C
Q = 0

with L = 2× 10−1, R = 3× 102, and 1/C = 1/10−5 = 105. Therefore,

2× 10−1Q′′ + 3× 102Q′ + 105Q = 0 or 2Q′′ + 3× 103Q′ + 106Q = 0

From the characteristic equation:

r =
−3× 103 ±

√
9× 106 − 8× 106

4
= 103

(−3± 1

4

)
= −500,−1000

Therefore,
Q = C1e

−500t + C2e
−1000t

The initial conditions translate to: Q(0) = 10−6 and Q′(0) = 0. give C1 = 2 × 10−6

and C2 = −10−6, or
Q = 10−6

(
2e−500t − e−1000t

)
4. Problem 13: The quasi-period of the damped motion is 50% greater than the period

of the undamped motion, so we need to find the period of the undamped motion:

u′′ + u = 0 ⇒ u = A cos(t) + B sin(t)

The period is 2π/1, or 2π. The quasi-period of the damped motion is then 3π. If we
assume a form of R cos(ωt− δ), then:

2π

ω
= 3π ⇒ ω =

2

3

The roots to the characteristic equation of the damped motion are:

r =
−γ ±

√
γ2 − 4

2

If we want to get quasi-periodic motion, then γ2 − 4 < 0, so we’ll write
√

γ2 − 4 as
i
√

4− γ2, and:

r = −γ

2
±
√

4− γ2

2
= λ± ωi

We want ω = 2
3
, so:

√
4− γ2

2
=

2

3
⇒ γ2 = 4− 16

9
=

20

9

so γ = 2
√

5
3

.



5. Problem 14: The period of motion from an undamped system is from the solution to:

mu′′ + ku = 0 ⇒ u = R cos

√ k

m
t− δ


The period is:

2π√
k
m

= 2π

√
m

k

Recall that mg − kL = 0, or k = mg/L. Replacing k in the above equation gives us
the result,

2π

√
m

k
= 2π

√
mL

mg
= 2π

√
L

g

6. Problem 15: By the linearity of the differential equation, if v, w each solves mu′′ +
γu′ + ku = 0, then so does v + w (in fact, any linear combination c1v + c2w solves it).

Therefore, we just need to check that u = v + w satisfies the initial conditions:

u(t0) = v(t0) + w(t0) = u0 + 0 = u0

u′(t0) = v′(t0) + w′(t0) = 0 + u′0 = u′0

7. Problem 24: Consider

3

2
u′′ + ku = 0 u(0) = 2 u′(0) = v

We want to determine k, v so that the amplitude of our solution is 3 and the period is
π. First get the solution by solving the characteristic equation:

3

2
r2 + k = 0 ⇒ r = ±

√
2k

3

Therefore, the period of our solution will be:

Period =
2π√

2k
3

= π

Solve this for k to get that k = 6, which means that r = ±2i.

Our solution is now:
u = C1 cos(2t) + C2 sin(2t)

Using the initial conditions, C1 = 2 and C2 = v
2

The amplitude can be determined now in terms of v:

R2 = C2
1 + C2

2 ⇒ 9 = 4 +
v2

4

we get that v2 = 20, or v = ±2
√

5.



8. Problem 26: Probably best to leave in general constants until the very end.

The solutions to the characteristic equation are:

r = − γ

2m
±
√

4km− γ2

2m
i

.
= λ± µi

so that the general solution is:

u = eλt (c1 cos(µt) + c2 sin(µt))

Solve using the initial conditions u(0) = u0, u
′(0) = v0, we get:

c1 = u0 c2 =
v0 − λu0

µ

so that the (squared) amplitude is:

R2 = c2
1 + c2

2 = u2
0 +

(
v0 − λu0

µ

)2

We substitute the values in for λ and µ noticing that

1

µ2
=

4m2

4km− γ2

Now:

R2 = u2
0 +

(v0 + γ
2m

u0)
2 · 4m2

4km− γ2
= u2

0 +
(2mv0 + γu0)

2

4km− γ2

This answer is equivalent to the text’s answer, but I think it’s easier to read.

In any event, it is clear that, as γ → 4km, the amplitude increases (the period increases
as well).


