Selected Solutions, Section 5.1

1. Problem &: Use the Ratio Test:
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In class, we talked about the technique where we exponentiate to use L’Hospital’s rule:
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so now we take the limit of the exponent:
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which is of the form 0/0. Continue with L'Hospital:
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And the ratio test:

2. Problem 12: Actually, this is kind of a “trick question”, although the usual procedure
still works:

fa) =2 = f(-1)=1
Fa)=20 = f(-1)=-2
Py =2 = fl-1)=2

Therefore,
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(Notice that if you expand and simplify this, you get 2% back.)

This is not an infinite series; no matter what = is, you can always add those three
terms together: The radius of convergence is oc.



3. Problem 14. At issue here is to find a pattern in the derivatives, so we can write the
general form for the n'" derivative.

n=0 f(z)=>0+xz)"! f(0)y=1
n=1 f(r)=—(1+z)7? f(0)=-1
n=2 f'(x)=(-1)(-2)(1+=)7° f7(0) =2
n=3 f"(zr)=(-1)(=2)(=3)(1+z)"* f"(0)=-3!

From this we see that:
F(0) = (=1)"n!

The Taylor series (actually, the Maclaurin series) is:
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and this converges if |z| < 1 (its an alternating geometric series).

For extra practice, we could see this directly using the sum of the geometric series:
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4. Problem 16. Very similar to 14, we try to find the pattern in the derivatives.

n=0 f(z)=(1—2)" f(2) =1
n=1 fl)=(1-2)" f2)=1

n=2 f@)=ER1-2)"  f(2)=-2
n=3 f"(z) = (D)E)1-2) f(2) =3l

The pattern is: f(2) = (—=1)"*'n!. Therefore, the Taylor series is:
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with a radius of convergence p = 1.
5. Problem 18: Given that -
y=> ap"
n=0

Compute 3/ and y” by writing out the first four terms of each to get the general term.
Show that, if " = y, then the coefficients ag and a; are arbitrary, and show the given
recursion relation.

o0
Y= ag+ ax + asx® + agra® + ... = Zanx"
n=0
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Y = ay + 2a01 + 3asz? + dagad + ... = Z(n + Dapz"
n=0
Y’ =2as+3-2a3x +4-3a2® +5 - dagz + ... = Z n+2)(n+ 1)a, 22"

If 4" = y, then the coefficients must match up, power by power:

ag = 2@2 a; = 6@3 a9 = 12&4 e Ay = (n + 2)(71 + 1>an+2

Problems 19-23 are some symbolic manipulation problems.
. Problem 19: Rewrite the left side equation so that the powers of x match up.

. Problem 20: Much the same. In this problem, we see that the first sum starts with
a constant term, the second sum starts with z!, and so does the sum on the left.
Therefore, we would rewrite each sum to start with 2! power:
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Now each sum begins with the same power of x,
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Z apz® + Z apx™t = a; + Z Qpi1x" + Z Ap1x" = a; + Z (A1 +anq)x
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. Problem 21: You may use a different symbol for the summation index if you like (it is

a dummy variable):

Z (n — 1Dayz" -2

We would like this to be indexed using z*, k = 0,1,2,.... This means that k =n — 2
or n = k + 2. Making the substitutions in each term,
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. Problem 22: In this case, the powers begin with 22, so we let k =n+2orn =k — 2,
with £ =2,3,4,.. .
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10. Problem 23: Take care of the product with z first,
Y na,x" T+ gt = naat + Y aa”
n=1 k=0 n=1 k=0

The first sum could begin with zero- It would make the first term of the sum zero.

Therefore,

Z napx” + Z apz® = Z(n + Dayz"
n=0 k=0

n=1



