Selected Solutions, Section 6.4

1. Problem 2:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=u_{\pi}(t)-u_{2 \pi}(t), \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Take the Laplace transforms and solve for $Y(s)$:

$$
\begin{gathered}
\left(s^{2} Y-0-1\right)+2(s Y-0)+2 Y=\left(\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}\right) \frac{1}{s} \\
\left(s^{2}+2 s+2\right) Y=\left(\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}\right) \frac{1}{s}+1 \\
Y=\left(\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}\right) \frac{1}{s\left(s^{2}+2 s+2\right)}+\frac{1}{s^{2}+2 s+2}
\end{gathered}
$$

We'll do the last term first:

$$
\frac{1}{s^{2}+2 s+2}=\frac{1}{s^{2}+2 s+1+1}=\frac{1}{(s+1)^{2}+1}
$$

so the inverse Laplace transform is (table entry 19): $\mathrm{e}^{-t} \sin (t)$.
Next, notice that the first term is of the form:

$$
\left(\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}\right) \frac{1}{s\left(s^{2}+2 s+2\right)}=\left(\mathrm{e}^{-\pi s}-\mathrm{e}^{-2 \pi s}\right) H(s)
$$

So if we find $h(t)$, the inverse Laplace transform of this part will be:

$$
u_{\pi}(t) h(t-\pi)-u_{2 \pi}(t) h(t-2 \pi)
$$

Therefore, we only need to focus on inverting:

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+2\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+2}
$$

Solving, we get $A=1 / 2, B=-1 / 2, C=-1$, or:

$$
\frac{1}{2} \cdot \frac{1}{s}-\frac{1}{2} \cdot \frac{s+2}{s^{2}+2 s+2}=\frac{1}{2} \cdot \frac{1}{s}-\frac{1}{2}\left[\frac{s+1}{(s+1)^{2}+1}+\frac{1}{(s+1)^{2}+1}\right]
$$

Now $h(t)=\frac{1}{2}-\frac{1}{2}\left(\mathrm{e}^{-t} \cos (t)+\mathrm{e}^{-t} \sin (t)\right)$. Putting it all together,

$$
y(t)=\mathrm{e}^{-t} \sin (t)+u_{\pi}(t) h(t-\pi)-u_{2 \pi}(t) h(t-2 \pi)
$$

See the Maple worksheet for verification and the plots.
2. Problem 6:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=u_{2}(t), \quad y(0)=0, \quad y^{\prime}(0)=1
$$

As is usual, take the Laplace transforms and solve for $Y(s)$:

$$
\begin{gathered}
\left(s^{2} Y-0-1\right)+3(s Y-0)+2 Y=\mathrm{e}^{-2 s} \frac{1}{s} \\
Y=\mathrm{e}^{-2 s} \frac{1}{s\left(s^{2}+3 s+2\right)}+\frac{1}{s^{2}+3 s+2}
\end{gathered}
$$

Break it up-Let's do the second term first:

$$
\frac{1}{s^{2}+3 s+2}=\frac{1}{(s+2)(s+1)}=\frac{A}{s+2}+\frac{B}{s+1}=-\frac{1}{s+2}+\frac{1}{s+1}
$$

so the inverse Laplace transform of this part is: $-\mathrm{e}^{-2 t}+\mathrm{e}^{-t}$.
Alternative Solution to this part. We could have completed the square in the denominator:

$$
\frac{1}{s^{2}+3 s+2}=\frac{1}{s^{2}+3 s+\frac{9}{4}+2-\frac{9}{4}}=2 \frac{\frac{1}{2}}{\left(s+\frac{3}{2}\right)^{2}-\frac{1}{4}}
$$

Combine table entries 14 and 7 to get the inverse Laplace transform as:

$$
2 \mathrm{e}^{-\frac{3}{2} t} \sinh \left(\frac{1}{2} t\right)
$$

This is the solution that Maple gives you. Notice that it is the same as our solution:

$$
2 \mathrm{e}^{-\frac{3}{2} t} \sinh \left(\frac{1}{2} t\right)=2 \mathrm{e}^{-\frac{3}{2} t} \cdot \frac{1}{2}\left(\mathrm{e}^{\frac{1}{2} t}-\mathrm{e}^{-\frac{1}{2} t}\right)=\mathrm{e}^{-t}-\mathrm{e}^{-2 t}
$$

It is probably easier to factor and use partial fractions...
3. Problem 15:

We want a function g that:

- Ramps up from the point $\left(t_{0}, 0\right)$ to $\left(t_{0}+k, h\right)$
- Then ramps down from $\left(t_{0}+k, h\right)$ to $\left(t_{0}+2 k, 0\right)$.

Notice that this is simply two line segments. We have pairs of points for each, so let's write the equation of each line segment:

- Slope: $\frac{h}{k}$, so: $y-0=\frac{h}{k}\left(t-t_{0}\right)$.
- Slope: $\frac{-h}{k}$, so: $y-0=-\frac{h}{k}\left(t-\left(t_{0}+2 k\right)\right)$

Finally, use the "On-Off" switch for each line segment. The first line segment comes on at time t_{0}, off at $\left.t_{0}+k\right)$:

$$
\left(u_{t_{0}}(t)-u_{t_{0}+k}(t)\right)\left(\frac{h}{k}\left(t-t_{0}\right)\right)
$$

We'll add in the second switch,

$$
\left(u_{t_{0}+k}(t)-u_{t_{0}+2 k}(t)\right)\left(-\frac{h}{k}\left(t-t_{0}-2 k\right)\right)
$$

Add everything together. To get the answer in the text, factor the slope out and expand (for us, you can leave your answer in this form).

$$
\left(u_{t_{0}}(t)-u_{t_{0}+k}(t)\right)\left(\frac{h}{k}\left(t-t_{0}\right)\right)+\left(u_{t_{0}+k}(t)-u_{t_{0}+2 k}(t)\right)\left(-\frac{h}{k}\left(t-t_{0}-2 k\right)\right)
$$

Alternatively, you could also have written the second line segment using the first ordered pair.
4. Problem 19: Straightforward to write down, a little tricky to analyze:

$$
y^{\prime \prime}+y=u_{0}(t)+2 \sum_{k=1}^{n} 2(-1)^{k} u_{k \pi}(t)
$$

Taking the Laplace transform, solve for Y and inverting:

$$
\left(s^{2}+1\right) Y=\frac{1}{s}+2 \sum_{k=1}^{n}(-1)^{k} \mathrm{e}^{-k \pi s} \frac{1}{s} \Rightarrow Y=\frac{1}{s\left(s^{2}+1\right)}+2 \sum_{k=1}^{n}(-1)^{k} \mathrm{e}^{-k \pi s} \frac{1}{s\left(s^{2}+1\right)}
$$

where

$$
\frac{1}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+1}=\frac{1}{s}-\frac{s}{s^{2}+1}
$$

so that

$$
y(t)=1-\cos (t)+2 \sum_{k=1}^{n}(-1)^{k} u_{k \pi t}(1-\cos (t-k \pi))
$$

This is a bit difficult to analyze in this form. However, if we consider the graph of the cosine, we see that:

$$
\begin{array}{ll}
\text { If } k \text { is odd } & \cos (t-k \pi)=-\cos (t) \\
\text { If } k \text { is even } & \cos (t-k \pi)=\cos (t)
\end{array}
$$

Here we write out the function in the form of a table:

kth term		Term is active:
$k=1$	$-2(1+\cos (t))$	$t \geq \pi$
$k=2$	$2(1-\cos (t))$	$t \geq 2 \pi$
$k=3$	$-2(1+\cos (t))$	$t \geq 3 \pi$
$k=4$	$2(1-\cos (t))$	$t \geq 4 \pi$
\vdots	\vdots	

Therefore, writing $y(t)$ in piecewise form (for clarity, I'm writing it as a table):

Interval	$y(t)$
$t<\pi$	$-\cos (t)+1$
$\pi \leq t<2 \pi$	$(1-\cos (t)-2(1+\cos (t))=-3 \cos (t)-1$
$2 \pi \leq t<3 \pi$	$3(1-\cos (t))-2(1+\cos (t))=-5 \cos (t)+1$
$3 \pi \leq t<4 \pi$	$3(1-\cos (t))-4(1+\cos (t))=-7 \cos (t)-1$
$4 \pi \leq t<5 \pi$	$5(1-\cos (t))-4(1+\cos (t))=-9 \cos (t)+1$

5. Problem 21 is similar to Problem 19. Here the solution is

$$
y(t)=(1-\cos (t))+\sum_{k=1}^{n}(-1)^{k} u_{k \pi}(t)(1-\cos (t-k \pi))
$$

Writing this solution down piecewise (see the pattern?):

Interval	$y(t)$
$t<\pi$	$1-\cos (t)$
$\pi \leq t<2 \pi$	$(1-\cos (t))-(1+\cos (t))=-2 \cos (t)$
$2 \pi \leq t<3 \pi$	$2(1-\cos (t))-(1+\cos (t))=-3 \cos (t)+1$
$3 \pi \leq t<4 \pi$	$2(1-\cos (t))-2(1+\cos (t))=-4 \cos (t)$
$4 \pi \leq t<5 \pi$	$3(1-\cos (t))-2(1+\cos (t))=-5 \cos (t)+1$
\vdots	\vdots

