Selected Solutions, Section 6.5
For the graphs of 1-8, see the Maple Worksheet on our class website.
1. Problem 1: ¢’ + 2y + 2y = §(t — 7),y(0) = 1,4/(0) =0
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We do each term separately:
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then h(t) = e 'sin(t)

The inverse Laplace transform of the first term is then wu, (¢)h(t — 7).

Similarly,
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so the inverse Laplace here is e ~*(cos(t) + sin(t)).
The overall solution: y(t) = e~*(cos(t) + sin(t)) + ur(t) (e~ =™ sin(t — 7))

2. Problem 2: "’ +4y = §(t — 7)) — (¢t — 2), zero ICs.
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and we find h(t), then the solution is u, (t)h(t — ) — ua, (t)h(t — 2m).
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Solving for h(¢):
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Just for practice, you might write the overall solution,
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y(t) = 5 (ur(t)sin(2(t = 7)) = uar(t) sin(2(t - 2m)))

as a piecewise defined function. Notice that sin(2¢) has a period of .
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h(t) = %sin(2t)

3. Problem 3: 3 + 3y’ + 2y = 6(t — 5) + u1o(t) with ICs y(0) = 0,y'(0) = 3.
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The two functions we need to invert:
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With this notation, its easy to write the solution:
1
y(t) = 5hl(zf) + us(t)h1 (t — 5) + u1o(t)ha(t — 10)

4. Problem 4: y"” —y = —206(t — 3), y(0) = 1,4'(0) = 0.
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Note that we could factor s — 1 as (s + 1)(s — 1) and perform partial fractions, but in this case we can
use Table Entries 7, 8 directly:

y(t) = cosh(t) — 20u3(¢) sinh(t — 3)



5. Problem 5: y” + 2y’ + 3y = sin(t) + (¢t — 37), y(0) = 0,4'(0) = 0.
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We'll take the partial fractions on first:
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For the second term, let
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Overall, the solution is then:
y(t) = h1(t) + usr (t)ha(t — 37)

As a double-check, you might notice that before time 3w, —1 (cos(t) — sin(t)) is the particular part of
the solution, and 1e~* cos(v/2t) is the homogeneous part of the solution.

6. Problems 6, 8 are very similar to 1-5.

7. For problems 17-21, notice that striking the system will “activate” the homogeneous solution, which is
otherwise 0. In this case, the homogeneous solution is C1 sin(t) 4+ Cs cos(t), which is periodic with period
2. We show what you could do for a quick hand-sketched analysis on the website.



