Quiz 6 Solutions
1. Use the definition of the Laplace Transform to compute L(f(t)), where f(t) is given as:
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Be sure to include the details about the convergence of the improper integral (L’Hospital’s
rule might come in handy).
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To integrate each of these, we need to integrate by parts:
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For the second integral,
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For this limit, we see that, by L’Hospital’s rule:
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Overall, the solution is:
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Note: You could check your answer by rewriting f(¢) in terms of the Heaviside function,
then use the table (not necessary, but shown here for completeness). If t > 0,
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For the term:
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So the Laplace transform is:
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For the third term,
wt)(2+t) = ft-1)=2+t = ft)=2+(+1)=3+t

so the Laplace transform is:
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. Problem 14, page 313. You may either use the formula given in the text, or the formula:
elat it — oo cos(bt) + e sin(bt)

and you may use Table Entry 2. Of course, you may NOT use Table Entry 10.

Given Euler’s formula, .
ela )t — oo cos(bt) + e sin(bt)

The desired Laplace transform can be found via:
L@ = £(e cos(bt)) 4 iL (e sin(bt))

Using Table Entry 2,

s—<;+z‘b) = L(e" cos(bt)) + iL(e" sin(bt))
(S_;)_ib = L(e" cos(bt)) + iL (™ sin(bt))
w = L(e” cos(bt)) + iL(e™ sin(bt))

B0 b e cos(bt)) + (e sin(b)

(s—a)?+0  (s—a)®+1?
Therefore, the Laplace transform of e* cos(bt) is
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. Find, using the table: L1 (Sg_f_ss_?))

We first perform Partial Fraction Decomposition:
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so that the Laplace transform is:



4. Find an expression for Y(s), do not solve for y(t):
Y — 4y’ + 4y = e’ cos(t), y(0) =0,y (0) =1
Taking the Laplace transform of both sides,
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5. Solve the following IVP using the method of Laplace Transforms:
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Therefore,
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We could keep these separate, or combine them (the following solution will combine
them). Factor the denominator:
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Use partial fractions, or see that:
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so that y(t) = e~t + te™t.



