
Homework Solutions
(Replaces Section 3.9)

1. Find the general solution of the given differential equation:

y′′ + 3y′ + 2y = cos(t)

First, get the homogeneous part of the solution by solving the characteristic equation:

r2 + 3r + 2 = 0 ⇒ (r + 2)(r + 1) = 0 ⇒ r = −1,−2

Therefore, yh(t) = C1e
−t +C2e

−2t. You could solve for the particular solution one of two
ways. For extra practice, you might try both. Here they are:

• Method of Undetermined Coefficients

yp(t) = A cos(t) + B sin(t) y′p = B cos(t)− A sin(t) y′′p = −A cos(t)−B sin(t)

so that, looking at the coefficients of cos(t) and sin(t), we have:

(−A + 3B + 2A) cos(t) + (−B − 3A + 2B) sin(t) = cos(t)

Therefore, by Cramer’s Rule:

A + 3B = 1
−3A + B = 0

⇒ A =
1

10
B =

3

10

The solution is C1e
−t + C2e

−2t + 1
10

cos(t) + 3
10

sin(t)

2. Pictured below are the graphs of several solutions to the differential equation:

y′′ + by′ + cy = cos(ωt)

Match the figure to the choice of parameters.

r2 + br + c = 0 ⇒ 1

2

Choice b c ω
(A) 5 3 1
(B) 1 3 1
(C) 5 1 3
(D) 1 1 3

We will discuss each situation before locating the curve on the graph.

(a) With b = 5, c = 3, we have r = −0.69 and −4.3. Therefore, our overall solution
will quickly die off to just the particular solution, which will have a period of 2π.

(b) With b = 1, c = 3, we have r = −0.5± 1.65i. Initially, we will have a combination
of sinusoidals, but it again will die off (not as quickly as before) to a function whose
period is 2π.
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(c) With b = 5, c = 1, we have something similar to (a), but now the forcing function
has period 2π/3 ≈ 2.09.

(d) The pseudo-(natural) frequency of the homogeneous part of the equation is
√

32,
but this again dies off leaving a function that is periodic with period about 2.09.

Now, graphs (ii) and (iii) will correspond to (a) and (b) (by the periods). It looks like
(iii) will probably correspond to (a), because of how rapidly the solution converges to
the particular solution.

So far: (ii) corresponds to (b) and (iii) corresponds to (a).

It would be a safe guess to bet that (i) corresponds to (d) and that leaves (iv) corre-
sponding to (c).

3. Recall that
Real(eiθ) = cos(θ) Imag(eiθ) = sin(θ)

Show that, given the DE below we can use the ansatz yp = Ae3ti (the real part),

y′′ + 4y = 2 cos(3t)

and we will get the particular solution,

A = −2

5
⇒ yp(t) = −2

5
cos(3t)

Solution: First differentiate, then substitute into the DE:

yp(t) = Ae3it y′p = 3iAe3it y′′p = 9i2Ae3it = −9Ae3it

We notice that 2 cos(3t) is the real part of 2e3it, so:

−9Ae3it + 4Ae3it = 2e3it ⇒ −5A = 2 ⇒ A = −2

5

Therefore, taking the real part of −2
5
e3it gives us our particular solution.

4. Fill in the question marks with the correct expression:

Given the undamped second order differential equation, y′′ + ω2
0y = A cos(ωt), we see

“beating” if (|ω − ω0| is small) In particular, the longer period wave has a period that
gets longer as ω → ω0, and its amplitude gets bigger

5. Find the solution to y′′ + 9y = 2 cos(3t), y(0) = 0, y′(0) = 0 by first solving the more
general equation: y′′ + 9y = 2 cos(at), y(0) = 0, y′(0) = 0, then take the limit of your
solution as a → 3.

Solution: This is going through the steps of the argument that we also did in class.
First, the homogeneous part of the solution is:

yh(t) = C1 cos(3t) + C2 sin(3t)

The particular part is (differentiate to substitute into the DE):

yp = A cos(at)+B sin(at) y′p = Ba cos(at)−Aa sin(at) y′′p = −Aa2 cos(at)−Ba2 sin(at)
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And,

y′′p + 3yp = A
(
−a2 + 9

)
cos(at) + B

(
−a2 + 9

)
= 2 cos(at) ⇒ A =

2

9− a2
B = 0

The particular part of the solution is:

yp(t) =
2

9− a2
cos(at)

Put everything together to solve with the initial conditions, y(0) = 0 and y′(0) = 0:

y = C1 cos(3t)+C2 sin(3t)+
2

9− a2
cos(at) ⇒ 0 = C1+

2

9− a2
⇒ C1 = − 2

9− a2

and, using y′(0) = 0,
0 = 0 + 3C2 + 0 ⇒ C2 = 0

Therefore, the overall solution to the IVP is:

y(t) =
2

9− a2
(cos(at)− cos(3t))

Take the limit as a → 3 using L’Hospital’s rule:

lim
a→3

2(cos(at)− cos(3t))

9− a2
= lim

a→3

−2t sin(at)

−2a
= t sin(3t)

6. Suppose a unit mass is attached to a spring, with spring constant k = 16. Assuming
that damping is negligible (γ = 0), suppose that we lightly tap the mass with a hammer
(downward) every T seconds.

Suppose the first tap is at t = 0, and before that time the mass is at rest1. Describe
what you think will happen to the motion of the mass for the following choices of the
tapping period T : (a) T = π/2 (b) T = π/4

Note that the homogeneous solution is

yh(t) = C1 cos(4t) + C2 sin(4t) = R cos(4t− δ)

so that the period of the homogeneous solution is

2π

4
=

π

2

Using a period of pi/2 for the hammer strikes will then result in a phenomena much like
resonance, where the amplitude of the solution will begin to go to infinity.

Using a period of π/4, it is possible that the motion of the spring stopped, since the
hammer strike is moving in the opposite direction of the motion. It would then start up
again in another π/4 units of time, and repeat.

7. (Extra Practice) Can the following functions be linearly independent solutions to a
second order linear homogeneous differential equation? Why or why not?

The two functions can generally NOT be linearly independent solutions. We see that
the Wronskian is zero at approximately t = 2π and t = 4π (the functions share a
t−intercept).

1If you want to algebraically describe this, use initial conditions u(0) = 0 and u′(0) = 1. We will solve this
problem completely after Spring Break.
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