
Lecture Notes: To Replace 7.1/7.2

Summary:

• What is a system of equations?

• Definition of a matrix, vector, matrix-vector multiplication, matrix-
matrix multiplication, determinant of a matrix, transpose.

• Special matrices: I and A−1.

• Parametric equations, derivatives, integrals

• Convert an nth order DE to an equivalent system of first order.

• Solution to 2× 2 systems of first order.

Motivating example: System of two tanks.

Matrices and Operations on Matrices

A system of 2 equations in 2 unknowns can be converted in a compact way
to a matrix-vector equation:

ax + by = e
cx + dy = f

⇔
[

a b
c d

] [
x
y

]
=

[
e
f

]
A matrix is simply an array of numbers, and the size of a matrix is defined
as the number of rows × the number of columns. We will work with 2 × 2
matrices. A vector is a column of numbers. We say that a vector belongs
to IRn if it has n real numbers as its components. The definition above gives
meaning to matrix-vector multiplication.
Example: Compute the following:[

−1 0
1 2

] [
2
1

]
= 2

[
−1

1

]
+ 1

[
0
2

]
=

[
−2

4

]
[

3 1
1 −2

] [
0
1

]
=

[
1
−2

]
Matrix-Matrix multiplication is defined via matrix-vector multiplication. Think
of the second matrix in terms of its columns:[

a b
c d

] [
e f
g h

]
=

[ [
a b
c d

] [
e
g

] [
a b
c d

] [
f
h

] ]

=

[
ae + bg af + bh
ce + dg cf + dh

]
For what sizes of matrices is matrix-matrix multiplication defined?
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Special Case: Scalar multiplication (See example)
Example: Compute the following:[

−1 0
1 2

] [
3 1
1 −2

]
=

[
−3 + 0 −1 + 0

3 + 2 1− 4

]

5

[
3 1
1 −2

]
=

[
15 5
5 −10

]
The determinant, the transpose and the trace.

In the transpose, the old columns make up the new rows (diagonal elements
are left unchanged).

det(A) = det

[
a b
c d

]
= ad− bc AT =

[
a c
b d

]
Tr(A) = a + d

We have seen this determinant when we use Cramer’s Rule to solve a
system of equations. We’ll see it again momentarily.

Inverses and the Identity

There are two special matrices used in matrix multiplication: The identity
and the inverse. The identity matrix is a matrix whose only non-zero elements
are the ones along its diagonal. It can be any square size, as needed (use the
one for which the given multiplication is defined).

I =

[
1 0
0 1

]
You will verify in the exercises that, for any matrix A, the identity works
like the number 1 in the real numbers:

AI = IA = A

The inverse of a matrix A is another matrix, A−1 so that:

AA−1 = A−1A = I

You will verify in the exercises that, given a 2× 2 matrix, the inverse can be
written down directly:

A =

[
a b
c d

]
⇒ A−1 =

1

ad− bc

[
d −b
−c a

]
(1)
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Solving the System

In solving a system of equations, there are three (and only three) possible
outcomes: (i) Exactly one solution (intersecting lines), (ii) No Solution (par-
allel lines), (iii) an infinite number of solutions (the same line).

Theorem If the matrix of coefficients has an inverse, then the system Ax = b
has exactly one solution, x = A−1b (which could also be found by Cramer’s
Rule or computing the inverse directly using Equation 1).

Corollary 1: If the matrix of coefficients has a non-zero determinant, then
there is exactly one solution to the system of equations (because we can
compute the inverse).

Corollary 2: If we are solving Ax = 0 for x, then we obtain an infinite
number of solutions only when det(A) = 0 (You might notice that in this
system, there are only two possible outcomes rather than three. What are
they?)
Examples:

1. Solve the system: [
−1 0

1 2

] [
x
y

]
=

[
2
−3

]
SOLUTION: The determinant is −2, so there is exactly one solution:[

x
y

]
=

1

−2

[
2 0
−1 −1

] [
2
−3

]
=

[
−2

−1/2

]
We can verify that this is a solution:[

−1 0
1 2

] [
−2

−1/2

]
=

[
2
−3

]
2. Solve the system: [

1 2
2 4

] [
x
y

]
=

[
0
0

]
SOLUTION: The determinant is 0, so there is an infinite number of
solutions (NOTE: We cannot have “no solution”, because x = 0 and
y = 0 is a “trivial” solution). To represent the infinite number of
choices, go back to the original equations:

x + 2y = 0
2x + 4y = 0

The second line is a constant multiple of the first. Therefore, for these
equations to be true must mean that either

x = −2y or y = −1

2
x
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So, for example, any of these choices of vectors would solve the system:[
0
0

]
,

[
2
−1

]
,

[
4
−2

]
, or

[
−2

1

]
, . . .

Generically, any vector of the following form would solve the system:[
−2c

c

]
= c

[
−2

1

]
Parametric Equations

You’ve seen parametric equations in Calculus- They are a mapping from the
real line to IRn. Typically, we will only use the plane (IR2), so our functions
will look like the following, where differentiation and integration are defined
elementwise:

x(t) =

[
x1(t)
x2(t)

]
x′(t) =

[
x′

1(t)
x′

2(t)

] ∫
x(t) dt =

[ ∫
x1(t) dt∫
x2(t) dt

]
When we visualize these in the plane, we will see a curve, where each point
of the curve is defined as (x1(t), x2(t)). Notice that you could also visualize
these as two separate curves, (t, x1(t)) and (t, x2(t)).

Systems of DEs and Parametric Equations

Definition: An autonomous system of first order linear differential equa-
tions is a system of the form:

x′
1 = ax1 + bx2

x′
2 = cx1 + dx2

⇔
[

x′
1

x′
2

]
=

[
a b
c d

] [
x1

x2

]
⇔ x′ = Ax

Definition: A solution to the system is a parametric function that satisfies
the given relationship.
Definition: The trivial solution: the origin is always a solution to the
autonomous linear system. In fact, any constant solution to Ax = 0 is an
equilibrium solution.

Examples

1. Show that x(t) = [cos(t), sin(t)]T solves the system:

x′(t) =

[
0 −1
1 0

]
x

SOLUTION: We see that x′
1(t) = − sin(t) and x′

2(t) = cos(t). There-
fore, x′

1 = −x2 and x′
2 = x1. This is the system of differential equations

represented by the matrix-vector equation given. We also note that the
solution to the system would be plotted as a circle in the plane.
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2. Find the equilibrium solutions to:

x′ =

[
1 2
2 4

]
x

We set the system to zero and solve (See the previous section). The
solutions are: [

x1(t)
x2(t)

]
= c

[
−2
1

]
=

There is a line of equilibrium solutions (can you write the equation of
the line in the plane?)

3. Verify that the following function solves the following system:

x′ =

[
1 1
4 1

]
x x(t) = c1

[
1
2

]
e3t + c2

[
1
−2

]
e−t

We will substitute this x into the system to see if we get a true state-
ment (just like we did way back in Chapter 1):

x′ = 3c1

[
1
2

]
e3t − c2

[
1
−2

]
e−t =

[
3c1e

3t − c2e
−t

6c1e
3t + 2c2e

−t

]
And, compare this to:[

1 1
4 1

]
x =

[
1 1
4 1

] [
c1e

3t + c2e
−t

2c1e
3t − 2c2e

−t

]
=

[
3c1e

3t − c2e
−t

6c1e
3t + 2c2e

−t

]

Second order DEs to First Order Systems

We can convert every second order ODE into an equivalent system of first
order equations. This is important in two aspects- (i) Most computer software
systems require you to do this, and (ii) The systems are more general.

The idea is to make a substitution:

ay′′ + by′ + cy = 0 Let
x1 = y
x2 = y′

⇒ x′
1 = y′

x′
2 = y′′ = −(b/a)y′ − (c/a)y

Writing this in terms of x1, x2, we get:

ay′′ + by′ + cy = 0 ⇒ x′ =

[
0 1

−(c/a) −(b/a)

]
x

In terms of our models, notice that we are now solving for both position and
velocity at the same time, rather than just position.

One question that you might have: Does every (autonomous) system
correspond to a second order system? The answer is: Many do.
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Systems to Second Order

Rather than giving a general formula, which is somewhat long and not ter-
ribly meaningful, let’s try a specific problem. We will try to convert the
following into a second order DE:

x′
1 = x1 + x2

x′
2 = 4x1 + x2

The coefficients in the first equation will be easier to use for the substitution:
Solve it for x2 (and therefore also x′

2), and use that substitution into the
second equation. The result is a second order DE in x1:

x2 = x′
1 − x1

x′
2 = x′′

1 − x′
1

2d equation becomes x′′
1 − x′

1 = 4x1 + (x′
1 − x1) ⇒

x′′
1 − 2x′

1 − 3x1 = 0

Notice that we could have used the second equation to solve for x1, then
substitute (and its derivative) into the first. Just for fun, let’s try it and see
what happens:

x1 = 1
4
x′

2 − 1
4
x2

x′
1 = 1

4
x′′

2 − 1
4
x′

2

substitution
1

4
x′′

2 −
1

4
x′

2 =
1

4
x′

2 −
1

4
x2 + x2

Clear fractions by multiplying by 4, then simplify to get: The same equation
as before!

From Chapter 3, we can solve the system- But be careful, we need to be
consistent. We will solve the system both ways to show you why.

The characteristic equation for the DE has roots r = 3,−1, so the general
solution in the first equation is:

x1 = c1e
3t + c2e

−t

Then, using the given substitution, x2 = x′
1 − x1, so in this case,

x2 = 3c1e
3t − c2e

−t − c1e
3t − c2e

−t = 2c1e
3t − 2c2e

−t

This is the solution we obtained in Example 3 of the previous section. How-
ever, if we had used the other substitution:

x2 = k1e
3t + k2e

−t

then x1 = 1
4
(x′

2 − x2). To finish it up,

x1 =
1

2
k1e

3t − 1

2
k2e

−t

To make the two solutions, we notice that k1 = 2c1 and k2 = 2c2. We do
indeed get the correct solution either way- as long as we are consistent!

6


