
Lecture Notes (Day 2-3): To Replace Chap 7

Starting with the autonomous linear system,

x′ = Ax

We saw a hint at how we might solve the general system using the exponential
function. We will use as an ansatz:

x(t) = eλtv

For this to be a solution, we must have that:

x′ = λeλtv = Ax = Aeλtv

Or, the constant λ and the vector v must satisfy the relationship:

Av = λv

Such a constant-vector pair are called an eigenvalue and eigenvector for the
matrix A.
Example: Show that λ = 2, v = [−1, 1]T is an eigenvalue/vector for the
matrix

B =

[
3 1
1 3

]
SOLUTION:

Bv =

[
3 1
1 3

] [
−1

1

]
=

[
−2

2

]
= 2

[
−1

1

]
= λv

Computing Eigenvalues and Eigenvectors:

Av = λv ⇒ av1 + bv2 = λv1

cv1 + dv2 = λv2
⇒ (a− λ)v1 +bv2 = 0

cv1 +(d− λ)v2 = 0

That is the key system of equations. We saw last time Ax = 0 has exactly the
zero solution iff det(A) 6= 0. Therefore, for there to be a non-zero eigenvector,
we must have that:∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = 0 ⇒ λ2 − (a + d)λ + (ad− bc) = 0

Theorem: The eigenvalues for the 2× 2 matrix A are found by solving the
characteristic equation:

λ2 − Tr(A)λ + det(A) = 0

So, given A, compute the Tr(A), the det(A) and the discriminant,

∆ = (Tr(A))2 − 4det(A)

Then the eigenvalues are:

λ =
Tr(A)±

√
∆

2
Just as in Chapter 3, the form of the solution will depend on whether ∆ is
positive (two real λ), negative (two complex λ) or zero (one real λ).
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Case 1: Real eigenvalues, Two eigenvectors

Example: Solve and analyze the graph of the solutions to:

x′ =

[
3 −2
2 −2

]
x Tr(A) = 1 det(A) = −2 ∆ = 9

The eigenvalues are λ = −1, 2. The corresponding eigenvectors are found by
solving the system above. For λ = −1:

(3 + 1)v1 − 2v2 = 0
2v1 + (−2 + 1)v2 = 0

2v1 − v2 = 0 v2 = 2v1 v =

[
1
2

]
For λ = 2:

(3− 2)v1 − 2v2 = 0
2v1 + (−2− 2)v2 = 0

v1 − 2v2 = 0 v1 = 2v2 v =

[
2
1

]
(Exercise is to verify the following) The solution to the system of differential
equations is:

x(t) = C1e
−t

[
1
2

]
+ C2e

2t

[
2
1

]
To sketch the graph, notice that, if c1 = 0, then the solution starts on a
multiple of [2, 1]T and moves along the vector to ∞- Same for negative mul-
tiples. If c2 = 0, then the solution tends to zero along the vector [1, 2]T . The
equilibrium solution (the origin) in this instance is called a saddle point.
That is, some most solutions tend towards infinity, except for some special
cases.

Case 2: Complex Eigenvalues

Suppose we have a complex eigenvalue, λ = a ± ib. Use one of them to
construct the corresponding eigenvector (complex) v.

Theorem: Given λ = a + ib, v, the solution to the system of differential
equations is:

x(t) = C1Real
(
eλtv

)
+ C2Imag

(
eλtv

)
Notice that this is the extension of what we did in Chapter 3 (verify in the
exercises).

Example: x′ =

[
2 −5
1 −2

]
x The trace is zero, the determinant is 1, the

discriminant is -4. Therefore, λ = ±i. Solve for one of the eigenvectors.
Using λ = i, we have:

(2− i)v1 − 5v2 = 0
1v1 + (−2− i)v2 = 0
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Using the second equation, v1 = (2+i)v2, and we have our eigenvalue/eigenvector
pair. Now we compute the needed quantity, eλtv:

eit

[
2 + i

1

]
= (cos(t) + i sin(t))

[
2 + i

1

]
=

[
(cos(t) + i sin(t))(2 + i)

cos(t) + i sin(t)

]
Simplifying, we get:[

(2 cos(t)− sin(t)) + i(2 sin(t) + cos(t))
cos(t) + i sin(t)

]
The solution is:

x(t) = C1

[
2 cos(t)− sin(t)

cos(t)

]
+ C2

[
2 sin(t) + cos(t)

sin(t)

]

Case 3: One Real Eigenvalue, One Eigenvector

In the rare occurrence that you have one eigenvalue but two eigenvectors
(we’ll do this in class), go to Case 1. Otherwise, we have the more general
case here.

You can read pages 423-424 for more information on this one. This is a
special case where we need to find a second eigenvector (called a generalized
eigenvector):

• Given an eigenvalue λ and eigenvector v, find the “generalized” eigen-
vector w by solving the system:

(a− λ)w1 + bw2 = v1

c w1 + (d− λ)w2 = v2

The solution to the differential equation is then given by:

x(t) = c1e
λtv + c2e

λt (tv + w)

Of course, in this instance we can always use the method of Chapter 3 to
solve this, but we want to note the form of the solution before we talk about
the geometry in Chapter 9.
Example:

x′ =

[
4 −2
8 −4

]
x

The trace is 0 and the determinant is 0. Therefore, λ = 0 is the only
eigenvalue. We now get the eigenvector v:

4v1 − 2v2 = 0 ⇒ v =

[
2
4

]
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Now the generalized eigenvector w:

4w1 − 2w2 = 2
8w1 − 4w2 = 4

4w1 − 2w2 = 2

We take any w1, w2 that satisfies this relationship- integer solutions are nice
(you can change v if necessary), and in this case we choose w1 = 0 and
w2 = −1.

The solution is (in several forms):

x(t) = c1

[
2
4

]
+ c2

(
t

[
2
4

]
+

[
0
−1

])
=

[
2c1 + 2c2t

(4c1 − c2) + 4tc2

]
We’ll check that this is indeed a solution. First, we compute x′ and show

that it is equal to Ax:

x′ =

[
2c2

4c2

]
Ax =

[
4 −2
8 −4

] [
2c1 + 2c2t

(4c1 − c2) + 4tc2

]
=

[
0 + 2c2 + 0t
0 + 4c2 + 0t

]

Summary

To solve x = Ax, find the trace, determinant and discriminant. The eigen-
values are found by solving the characteristic equation:

λ2 − Tr(A)λ + det(A) = 0 λ =
Tr(A)±

√
∆

2

The solution is one of three cases, depending on ∆:

• Real λ1, λ2 give two eigenvectors, v1,v2:

x(t) = C1e
λ1tv1 + C2e

λ2tv2

• Complex λ = a + ib, v (we only need one):

x(t) = C1Real
(
eλtv

)
+ C2Imag

(
eλtv

)
• One eigenvalue, one eigenvector v. Get w that solves (A− λI)w = v.

Then:
x(t) = eλt (C1v + C2 (tv + w))
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