Exercise Set 2 (replaces Ch 7)

1. Verify that the following function solves the given system of DEs:

$$\mathbf{x}(t) = C_1 e^{-t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \mathbf{x}$$

2. Convert each of the systems $\mathbf{x}' = A\mathbf{x}$ into a single second order differential equation, and solve it using methods from Chapter 3:

(a)
$$A = \begin{bmatrix} 1 & 2 \\ -5 & -1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$

3. Suppose we have a system of two differential equations, and the system gave us the eigenvalues and eigenvectors listed. For each, write the general solution to the differential equation:

(a)
$$\lambda_1 = -2$$
 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\lambda_2 = -1$ $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

(b)
$$\lambda = -1 + i$$
 $\mathbf{v} = \begin{bmatrix} 1+i\\2 \end{bmatrix}$

(c)
$$\lambda = 1, 1$$
 $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ where \mathbf{w} is the generalized eigenvector.

4. For each matrix, find the eigenvalues and eigenvectors. If there is only one eigenvector, find the associated generalized eigenvector.

(a)
$$A = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 3 & 9 \\ -1 & -3 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 1 & -5 \\ 1 & -3 \end{bmatrix}$$
 (d) $A = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix}$

5. For each system below, find y as a function of x by first writing the differential equation as dy/dx.

(a)
$$x' = -2x$$

 $y' = y$
(c) $x' = -(2x+3)$
 $y' = 2y - 2$

(b)
$$x' = y + x^3y$$
 $y' = x^2$ (d) $x' = -2y$ $y' = 2x$

Side remark: These problems are good review for Chapter 2; and they represent a little different approach to solving the system (although these are special cases for which dy/dx are solvable).

1

6. Match the graphs in the figure to the system $\mathbf{x}' = A\mathbf{x}$, where A comes from Exercise 4 (a)-(d).