Notes (Ch 9): Poincare Classification

- Earlier, the autonomous DE was: y' = f(y). Goal: Find and classify the equilibria (we looked at plot of y v. y').
- Goal today: Classify the origin in $\mathbf{x}' = A\mathbf{x}$

Summary from last time

Solve $\mathbf{x} = A\mathbf{x}$:

Find the eigenvalues/eigenvectors (through the trace, det and discriminant)

$$\lambda^{2} - \text{Tr}(A)\lambda + \det(A) = 0$$
 $\lambda = \frac{\text{Tr}(A) \pm \sqrt{\Delta}}{2}$

Depends on Δ :

• Real λ_1, λ_2 give two eigenvectors, $\mathbf{v}_1, \mathbf{v}_2$:

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2$$

• Complex $\lambda = a + ib$, **v** (we only need one):

$$\mathbf{x}(t) = C_1 \text{Real}\left(e^{\lambda t}\mathbf{v}\right) + C_2 \text{Imag}\left(e^{\lambda t}\mathbf{v}\right)$$

• One eigenvalue, one eigenvector \mathbf{v} . Get \mathbf{w} that solves $(A - \lambda I)\mathbf{w} = \mathbf{v}$. Then:

$$\mathbf{x}(t) = e^{\lambda t} \left(C_1 \mathbf{v} + C_2 \left(t \mathbf{v} + \mathbf{w} \right) \right)$$

So the type of solution depends on Δ , and in particular, where $\Delta = 0$:

$$\Delta = 0 \implies 0 = (\operatorname{Tr}(A))^2 - 4\det(A)$$

This is a parabola in the $(\text{Tr}(A), \det(A))$ coordinate system.

This cuts the plane into several regions, which we examine below (HAND-OUT: Poincaré Diagram)

Template Examples

Use the Poincaré diagram to locate these. The diagram gives "template" shapes, not the actual shapes (we'll see examples below).

- Two distinct eigenvectors: Saddle, source or sink.
 - Both negative eigenvalues: Sink
 - Both positive eigenvalues: Source
 - Mixed sign: Saddle
- Complex eigenvalues: Centers and Spirals
 - Real(λ) = 0 Center (Purely periodic, closed curves)
 - Real(λ) > 0: Spiral Source
 - $\operatorname{Real}(\lambda) < 0$: Spiral Center
- One eigenvector: We have a degenerate source (positive λ) or sink (negative λ).

Sometimes hard to distinguish these graphically from a spiral.

Using the Poincaré Diagram

In the examples on the next few pages, if the matrix had a double eigenvalue with only one eigenvector, then the generalized eigenvector is given (along with the regular eigenvector).

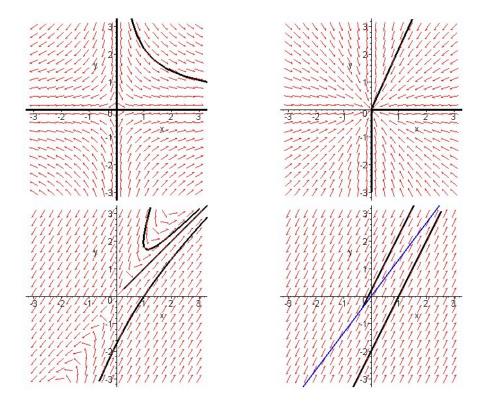


Figure 1: First set of four phase planes. From top to bottom, Saddle, Degenerate Sink, Saddle, Line of Stable fixed points.

First set of examples (See Figure)

System	Tr(A)	$\det(A)$	Δ	Poincare	λ	V
$\left[\begin{array}{cc} 3 & 0 \\ 0 & -2 \end{array}\right]$	1	-6	25	Saddle	3, -2	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$
$\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right]$	-2	1	0	Degen Sink	-1, -1	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$
$\left[\begin{array}{cc} 2 & -1 \\ 3 & -2 \end{array}\right]$	0	-1	4	Saddle	-1, 1	$\left[\begin{array}{cc} 1 & 1 \\ 3 & 1 \end{array}\right]$
$\left[\begin{array}{cc} 4 & -3 \\ 8 & -6 \end{array}\right]$	-2	0	4	Line of Stable	-2, 0	$\left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right]$

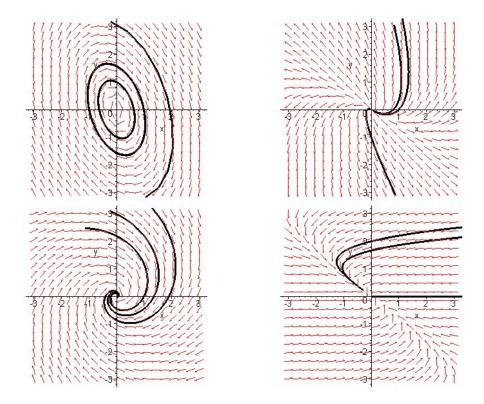


Figure 2: Second set of four phase planes. From top to bottom, Center, Degenerate Source, Spiral Sink, Sink.

System	Tr(A)	$\det(A)$	Δ	Poincare	λ	V
$\left[\begin{array}{cc} 1 & 2 \\ -5 & -1 \end{array}\right]$	0	9	-36	Center	3i	$\left[\begin{array}{c}2\\-1+3i\end{array}\right]$
$\left[\begin{array}{cc} 1 & -1 \\ 1 & 3 \end{array}\right]$	4	4	0	Degen Source	2, 2	$\left[\begin{array}{cc} -1 & 0 \\ 1 & 1 \end{array}\right]$
$\left[\begin{array}{cc} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{array}\right]$	-1	5/4	-4	Spiral Sink	$-\frac{1}{2}+i$	$\left[\begin{array}{c}1\\i\end{array}\right]$
$\left[\begin{array}{cc} -1 & -1 \\ 0 & -\frac{1}{4} \end{array}\right]$	-5/4	1/4	9/16	Sink	-1, -1/4	$\left[\begin{array}{cc} 1 & -4 \\ 0 & 3 \end{array}\right]$

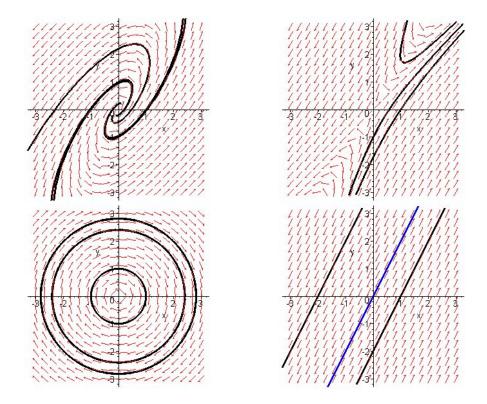


Figure 3: Third set of four phase planes. From top to bottom, Spiral Source, Saddle, Center, "Uniform Motion".

System	Tr(A)	$\det(A)$	Δ	Poincare	λ	V
$\begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$	2	5	-16	Spiral source	1+2i	$\left[\begin{array}{c}1\\1-i\end{array}\right]$
$\left[\begin{array}{cc} 2 & -1 \\ 3 & -2 \end{array}\right]$	0	-1	4	Saddle	-1, 1	$\left[\begin{array}{cc} 1 & 1 \\ 3 & 1 \end{array}\right]$
$\left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]$	0	9	-36	Center	2i	$\left[\begin{array}{c}-i\\1\end{array}\right]$
$\left[\begin{array}{cc} 4 & -2 \\ 8 & -4 \end{array}\right]$	0	0	0	Uniform Motion	0,0	$\left[\begin{array}{cc} 1 & 0 \\ 2 & -1/2 \end{array}\right]$

Homework:

- 1. Give the solution to the four systems $\mathbf{x}' = A\mathbf{x}$ from the previous page (page 5).
- 2. For the three systems below $\mathbf{x}' = A\mathbf{x}$, try to give a rough sketch of the behavior of the solutions near the equilibrium (the origin):

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \qquad A = \begin{bmatrix} -\frac{1}{2} & 1 \\ -1 & -\frac{1}{2} \end{bmatrix}$$

3. For the systems below, use the Poincaré diagram to classify the equilibrium solution. If necessary, first convert the equation to a system of first order equations:

(a)
$$\mathbf{x}' = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix} \mathbf{x}$$

(b)
$$y'' + y' + 3y = 0$$

(c)
$$2y'' - 3y' + 4y = 0$$

(d)
$$\mathbf{x}' = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \mathbf{x}$$

4. For the following nonlinear systems, find the equilibrium solutions (the derivatives are with respect to t, as usual).

(a)
$$x' = x - xy, y' = y + 2xy$$

(b)
$$x' = y(2 - x - y), y' = -x - y - 2xy$$

5. Explain how the classification of the origin changes by changing the α in the system:

$$\mathbf{x}' = \left[\begin{array}{cc} 0 & \alpha \\ 1 & -2 \end{array} \right] \mathbf{x}$$