Complex to Real Solutions

Given

$$ay'' + by' + cy = 0$$

and assuming that the solutions to the characteristic equation are complex conjugates,

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \lambda \pm \mu i$$

so that

$$\lambda = -\frac{b}{2a} \qquad \mu = \frac{\sqrt{4ac - b^2}}{2a}$$

we show that the following two functions form a fundamental set of solutions to ay'' + by' + cy = 0:

$$y_1 = e^{\lambda t} \cos(\mu t)$$
 $y_2 = e^{\lambda t} \sin(\mu t)$

First, we show that they are each solutions, so differentiate and substitute back into the DE. Note that every term will have the exponential attached, so we could factor it out:

$$y_1' = e^{\lambda t} \left(\lambda \cos\left(\mu t\right) - \mu \sin(\mu t) \right) \qquad y_2' = e^{\lambda t} \left(\mu \cos(\mu t) + \lambda \sin\left(\mu t\right) \right)$$
$$y_1'' = e^{\lambda t} \left(\left(\lambda^2 - \mu^2 \right) \cos\left(\mu t\right) - 2\lambda \mu \sin(\mu t) \right) \qquad y_2'' = e^{\lambda t} \left(2\lambda \mu \cos(\mu t) + \left(\lambda^2 - \mu^2 \right) \sin\left(\mu t \right) \right)$$

Substitute for y_1 , and factor out the coefficients of $\cos(\mu t)$ and $\sin(\mu t)$. We show that each of these are zero. For $\cos(\mu t)$, we have:

$$a(\lambda^2 - \mu^2) + b\lambda + c = a\lambda^2 + b\lambda + c - a\mu^2$$

Substitute in for $\lambda = -b/2a$ and μ :

$$=a\frac{b^2}{4a^2} - \frac{b^2}{2a} + c - a\frac{4ac - b^2}{4a^2} = \frac{ab^2}{4a^2} - \frac{2ab^2}{4a^2} + \frac{4a^2c}{4a^2} - \frac{4a^2c - ab^2}{4a^2} = 0$$

Similarly, one can do the algebra to show that y_2 is also a solution.

Now that we have two solutions, we show that they are linearly independent for any interval (the constants a, b, c are continuous everywhere):

$$W(y_1, y_2)(t) = \begin{vmatrix} e^{\lambda t} \cos(\mu t) & e^{\lambda t} \sin(\mu t) \\ e^{\lambda t} (\lambda \cos(\mu t) - \mu \sin(\mu t)) & e^{\lambda t} (\mu \cos(\mu t) + \lambda \sin(\mu t)) \end{vmatrix} = \\ e^{2\lambda t} \left(\mu \cos^2(\mu t) + \lambda \cos(\mu t) \sin(\mu t) - \lambda \cos(\mu t) \sin(\mu t) + \mu \sin^2(\mu t) \right) = \mu e^{2\lambda t}$$

This is not zero as long as μ is not zero. Since we assumed that we had complex roots, $\mu \neq 0$.