
Review Solutions

1. Finish the definition: Functions f, g are linearly independent if:

the only solution to k1f(t) + k2g(t) = 0 is k1 = k2 = 0 on an interval I.

2. If the W (y1, y2) = t2, can y1, y2 be two independent solutions to y′′+p(t)y′+q(t)y = 0?
Explain.

They can, if the solution is only valid for t > 0 or t < 0.

This is due to Abel’s Theorem (actually, a corollary on Pg. 156), which said that, if
two functions are solutions to a linear second order equation, then the Wronskian is
either always zero or never zero on the interval for which the solutions are valid.

3. Construct the operator associated with the differential equation: y′ = y2 − 4. Is the
operator linear? Show that your answer is true by using the definition of a linear
operator.

The operator is found by getting all terms in y to one side of the equation, everything
else on the other. In this case, we have:

L(y) = y′ − y2

This is not a linear operator. We can check using the definition:

L(cy) = cy′ − c2y2 6= cL(y)

Furthermore,

L(y1 + y2) = (y′1 + y′2)− (y1 + y2)
2 6= L(y1) + L(y2)

4. Find the solution to the initial value problem:

u′′ + u =


3t if 0 ≤ t ≤ π

3(2π − t) if π < t < 2π
0 if t ≥ 2π

u(0) = 0 u′(0) = 0

Without regards to the initial conditions, we can solve the three nonhomogeneous
equations. In each case, the homogeneous part of the solution is c1 cos(t) + c2 sin(t).

• u′′+u = 3t. We would start with yp = At+B. Substituting, we get: At+B = 3,
so yp = 3t. The general solution in this case is:

u(t) = c1 cos(t) + c2 sin(t) + 3t

• u′′ + u = 6π − 3t. From our previous analysis, the solution is:

u(t) = c1 cos(t) + c2 sin(t) + 6π − 3t



• The last part is just the homogeneous equation.

The only thing left is to find c1, c2 in each of the three cases so that the overall function
u is continuous:

• u(0) = 0, u′(0) = 0 ⇒

u(t) = −3 sin(t) + 3t 0 ≤ t ≤ π

• u(π) = 3 and u′(π) = 6, so:

u(t) = 9 sin(t) + (3− 6π) cos(t) + 6π − 3t π < t < 2π

• u(2π) = 3− 6π, u′(2π) = 6:

u(t) = 6 sin(t) + (3− 6π) cos(t) t ≥ 2π

5. Solve:
u′′ + ω2

0u = F0 cos(ωt), u(0) = 0 u′(0) = 0

if ω 6= ω0. (Hint: Probably easiest to use the Method of Undetermined Coefficients)

The homogeneous part of the solution is c1 cos(ω0t) + c2 sin(ω0t). The guess for the
particular part is yp = A cos(ωt)+B sin(ωt). Substitute yp into the differential equation
and solve:

ω2
0(yp = A cos(ωt) + B sin(ωt))

y′′p = −Aω2 cos(ωt)−Bω2 sin(ωt)

F0 cos(ωt) = A(ω2
0 − ω2) cos(ωt) + B(ω2

0 − ω2) sin(ωt)

Therefore, A =
F0

ω2
0 − ω2

, and B = 0.

The solution is now:

u = c1 cos(ω0t) + c2 sin(ω0t) +
F0

ω2
0 − ω2

cos(ωt)

Putting in the initial conditions:

u(0) = 0 ⇒ 0 = c1 +
F0

ω2
0 − ω2

⇒ c1 = − F0

ω2
0 − ω2

And
u′(0) = 0 ⇒ c2ω0 = 0 ⇒ c2 = 0

The solution is:

u(t) =
F0

ω2
0 − ω2

(cos(ωt)− cos(ω0t))



6. In class, we said that given:

u′′ + ω2
0u = F0 cos(ωt) u(0) = 0 u′(0) = 0

If ω 6= ω0, then

u(t) =
F0

ω2
0 − ω2

(cos(ωt)− cos(ω0t))

Show the solution if ω = ω0 two ways:

• Start over, with Method of Undetermined Coefficients

With undetermined coefficients, we take:

yp = (A cos(ω0t) + B sin(ω0t)) t

We multiply by t since the original guess would have been the solution to the
homogeneous equation. Take the first and second derivatives (Hint: Keep track
of the sine and cosine coefficients):

yp = At cos(ω0t) + Bt sin(ω0t)
y′p = (A + Bω0t) cos(ω0t) + (B − Aω0t) sin(ω0t)
y′′p = (2Bω0 − Aω2

0t) cos(ω0t) + (−2Aω0 −Bω2
0) sin(ω0t)

Taking y′′p + ω2
0yp, we get:

F0 cos(ω0t) = 2Bω0 cos(ω0t)− 2Aω0 sin(ω0t)

so that A = 0, B =
F0

2ω0

. Putting the solution together and solving for the

coefficients:

u(t) = A cos(ω0t) + B sin(ω0t) +
F

2ω0

t sin(ω0t) u(0) = 0 u′(0) = 0

we get that A = 0 and B = 0. Our final answer:

u(t) =
F0

2ω0

t sin(ω0t)

• Take the limit of the above expression as ω → ω0.

We can find the function directly by taking the limit (Use L’Hospital’s rule, dif-
ferentiating with respect to ω):

lim
ω→ω0

F0(cos(ωt)− cos(ω0t))

ω2
0 − ω2

= lim
ω→ω0

F0 · t sin(ω0t)

2ω
=

F0

2ω0

t sin(ω0t)



• For extra practice with trig integrals, you might also try to find the solution using
Variation of Parameters.

With the variation of parameters, y1 = cos(ω0t), y2 = sin(ω0t), g(t) = F0 cos(ω0t),
and the Wronskian is ω0. Using the formulas,

u′1 = −F0

ω0

sin(ω0t) cos(ω0t) u′2 =
F0

ω0

cos2(ω0t)

For the first integral, use u = sin(ω0t), du = ω0 cos(ω0t) dt. For the second
integral, use the half angle formula, cos2(x) = 1

2
(1 + cos(2x)):

u1 = − F0

2ω2
0

sin2(ω0t) u2 =
F0

2ω2
0

sin(ω0t) cos(ω0t) +
F0

2ω0

t

so that

yp = u1y1+u2y2 = − F0

2ω2
0

sin2(ω0t) cos(ω0t)+
F0

2ω2
0

sin2(ω0t) cos(ω0t)+
F0

2ω0

t sin(ω0t)

or, as we’ve gotten earlier, yp = F0

2ω0
t sin(ω0t)

7. On Page 208, we see: “The maximum value of R is:

Rmax =
F0

γω0

√
1− (γ2/4mk)

≈ F0

γω0

(
1 +

γ2

8mk

)

where the last expression is an approximation for small γ.”

Assuming that they’ve found the maximum correctly, show that the approximation is
valid for small γ (Hint: Think tangent line)

Notice that the heart of the matter is that we are saying that:

(1− x)−1/2 ≈ 1 +
1

2
x

when x is small. This is the equation of the tangent line to f(x) = (1−x)−1/2 at x = 0.
The point that the line goes through is (0, 1) and the slope is:

f ′(x)|x=0 =
1

2
(1− x)−3/2 =

1

2

and the tangent line is: y − 1 = 1
2
(x− 0) or y = 1 + 1

2
x, which is what was claimed.

8. Show that the period of motion of an undamped vibration of a mass hanging from a

vertical spring is 2π
√

L/g, where L is the elongation of the spring due to the mass and
g is the acceleration due to gravity.



Undamped motion means that we have:

mu′′ + ku = 0 ⇒ r = ±
√

k

m
i

.
= ±µi

so that the homogeneous solution is:

uh(t) = C1 cos(µt) + C2 sin(µt)

The period of this function is:
2π

µ
= 2π

√
m

k

From equilibrium, mg − kL = 0, we could write k = mg/L. Making this substitution,

2π

µ
= 2π

√
m

k
= 2π

√
m

(mg/L
= 2π

√
L

g

9. Consider y′′ + p(t)y′ + q(t)y = 0. Show that, if u(t) + iv(t) solves the differential
equation, then so must u(t) and v(t) as separate functions. (NOTE: If a+ ib = 0, then
a = 0 and b = 0).

There are two ways of doing this: Directly by substitution, or by using a linear operator:

• Operator: L(y) = y′′ + p(t)y′ + q(t)y is a linear operator. If u + iv solves the
differential equation, then: L(u + iv) = 0. Since L is linear, L(u + iv) = L(u) +
iL(v). Putting these together,

L(u) + iL(v) = 0 ⇒ L(u) = 0 and L(v) = 0

so u, v each solve the differential equation separately.

• By direct substitution:

(u′′ + iv′′) + p(t)(u′ + iv′) + q(t)(u + iv) = 0

Rewriting, and grouping terms:

(u′′ + q(t)u′ + p(t)u) + i(v′′ + p(t)v′ + q(t)v) = 0

Therefore, u′′ + p(t)u′ + q(t)u = 0 and v′′ + p(t)v′ + q(t)v = 0.

10. Given that y1 = 1
t

solves the differential equation:

t2y′′ − 2y = 0

Find a second linearly independent solution, y2.



First, rewrite the differential equation in standard form:

y′′ − 2

t2
y = 0

Then p(t) = 0 and W (y1, y2) = Ce0 = C. On the other hand, the Wronskian is:

W (y1, y2) =
1

t
y′2 +

1

t2
y2

Put these together:
1

t
y′2 +

1

t2
y2 = C y′2 +

1

t
y2 = Ct

The integrating factor is t,

(ty2)
′ = Ct2 ⇒ ty2 = C1t

3 + C2 ⇒ C1t
2 +

C2

t

Notice that we have both parts of the homogeneous solution, y1 = 1
t

and y2 = t2.

11. Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is
γ = 0.05. If there is no external forcing, then what would the spring constant have to
be in order for the system to critically damped? underdamped?

The model equation can be written as:

0.01u′′ + 0.05u′ + ku = 0 ⇒ u′′ + 5u′ + αu = 0

where 100k = α. The solutions depend on the discriminant,

25− 4α

If this is zero, we have a system that is critically damped. In this case, k = 4/2500

If the discriminant is negative, the system is underdamped. Solving for k, we get that
k > 4/2500.

12. Give the full solution, using any method(s). If there is an initial condition, solve the
initial value problem.

(a) y′′ + 4y′ + 4y = t−2e−2t

Using the Variation of Parameters, yp = u1y1 + u2y2, we have:

y1 = e−2t y2 = te−2t g(t) =
e−2t

t2

with a Wronskian of e−4t. You should find that:

u′1 = −1

t
u′2 =

1

t2



u1 = − ln(t) u2 = −1

t

so yp = − ln(t)e−2t − e−2t. This last term is part of the homogeneous solution, so
this simplifies to − ln(t)e−2t. Now that we have all the parts,

y(t) = e−2t(C1 + C2t)− ln(t)e−2t

(b) y′′ − 2y′ + y = tet + 4, y(0) = 1, y′(0) = 1.

With the Method of Undetermined Coefficients, we first get the homogeneous
part of the solution,

yh(t) = et(C1 + C2t)

Now we construct our ansatz (Multiplied by t after comparing to yh):

g1 = tet ⇒ yp1 = (At + B)et · t2

Substitute this into the differential equation to solve for A, B:

yp1 = (At3 + Bt2)et y′p1
= (At3 + (3A + B)t2 + 2Bt)et

y′′p1
= (At3 + (6A + B)t2 + (6A + 4B)t + 2B)et

Forming y′′p1
− 2y′p1

+ yp1 = tet, we should see that A = 1
6

and B = 0, so that
yp1 = 1

6
t3et.

The next one is a lot easier! yp2 = A, so A = 4, and:

y(t) = et(C1 + C2t) +
1

6
t3et + 4

with y(0) = 1, C1 = −3. Solving for C2 by differentiating should give C2 = 4.
The full solution:

y(t) = et
(

1

6
t3 + 4t− 3

)
+ 4

(c) y′′ + 4y = 3 sin(2t), y(0) = 2, y′(0) = −1.

The homogeneous solution is C1 cos(2t) + C2 sin(2t). Just for fun, you could try
Variation of Parameters. We’ll outline the Method of Undetermined Coefficients:

yp = (A sin(2t) + B cos(2t))t = At sin(2t) + Bt cos(2t)

y′′p = (−4At− 4B) sin(2t) + (4A− 4Bt) cos(2t)

taking y′′p + 4yp = 3 sin(2t), we see that A = 0, B = −3
4
, so the solution is:

y = c1 cos(2t) + c2 sin(2t)− 3

4
t cos(2t)

With y(0) = 2, c1 = 2. Differentiating to solve for c2, we find that c2 = −1/8.



(d) y′′ + 9y =
N∑

m=1

bm cos(mπt)

The homogeneous part of the solution is C1 cos(3t) + C2 sin(3t). We see that
3 6= mπ for m = 1, 2, 3, . . ..

The forcing function is a sum of N functions, the mth function is:

gm(t) = bm cos(mπt) ⇒ ypm = A cos(mπt) + B sin(mπt)

Differentiating,

y′′pm
= −m2π2A cos(mπt)−m2π2B sin(mπt)

so that y′′pm
+ 9ypm = (9−m2π2)A cos(mπt) + (9−m2π2)B sin(mπt).

Solving for the coefficients, we see that A = bm/(9−m2π2) and B = 0. Therefore,
the full solution is:

y(t) = C1 cos(3t) + C2 sin(3t) +
N∑

m=1

bm

9−m2π2
cos(mπt)

13. Rewrite the expression in the form a + ib:

• 2i−1 = eln(2i−1) = e(i−1) ln(2) = e− ln(2)ei ln(2) = 1
2
(cos(ln(2)) + i sin(ln(2)))

• e(3−2i)t = e3te−2ti = e3t (cos(−2t) + i sin(−2t)) = e3t (cos(2t)− i sin(2t))

(Recall that cosine is an even function, sine is an odd function).

• eiπ = cos(π) + i sin(π) = −1

14. Find a linear second order differential equation with constant coefficients if

y1 = 1 y2 = e−t

form a fundamental set, and yp(t) = 1
2
t2 − t is the particular solution.

The roots to the characteristic equation are r = 0 and r = −1. The characteristic equa-
tion must be r(r + 1) = 0 (or a constant multiple of that). Therefore, the differential
equation is:

y′′ + y′ = 0

For yp = 1
2
t2 − t to be the particular solution,

y′′p + y′p = (1) + (t− 1) = t

so the full differential equation must be:

y′′ + y′ = t



15. Determine the longest interval for which the IVP is certain to have a unique solution
(Do not solve the IVP):

t(t− 4)y′′ + 3ty′ + 4y = 2 y(3) = 0 y′(3) = −1

Write in standard form:

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)

The coefficient functions are all continuous on each of three intervals:

(−∞, 0), (0, 4) and (4,∞)

Since the initial time is 3, we choose the middle interval, (0, 4).

16. Let L(y) = ay′′ + by′ + cy for some value(s) of a, b, c.

If L(3e2t) = −9e2t and L(t2 + 3t) = 5t2 + 3t− 16, what is the particular solution to:

L(y) = −10t2 − 6t + 32 + e2t

We see that: L(3e2t) = −9e2t. By linearity,

cL(3e2t) = L(3ce2t) = −9ce2t = e2t

so c must be −1/9, and

L(−1

9
3e2t) = L(−1

3
e2t) = e2t

Similarly,
L(t2 + 3t) = 5t2 + 3t− 16

We need to multiply the right-side of the equation by −2 to get the desired part of our
solution, so multiply both sides by −2:

−2L(t2 + 3t) = −10t2 − 6t + 32

By linearity, −2L(t2 + 3t) = L(−2t2 − 6t). The particular solution is therefore,

yp(t) = −2t2 − 6t− 1

3
e2t

17. Show that, using the substitution x = ln(t), then the differential equation:

4t2y′′ + y = 0

becomes a differential equation with constant coefficients.



Solve it.

The way the ODE is written now, the derivative is with respect to t. We need to
convert it to a derivative in x:

dy

dt
=

dy

dx
· dx

dt
=

dy

dx
· 1

t

And the second derivative:

d2y

dt2
=

d

dt

(
dy

dx

)
· 1

t
+

dy

dx

(
− 1

t2

)
=

d2y

dx2
· dx

dt
· 1

t
− dy

dx
· 1

t2

Now defining y′ = dy
dx

, the differential equation becomes:

4t2
(
y′′ · 1

t2
− y′

1

t2

)
+ y = 4y′′ − 4y′ + y = 0

The characteristic equation has solns: r = 1
2
, 1

2

y(x) = e(1/2)x (C1 + C2x)

Back substituting x = ln(t), we get:

y(t) =
√

t (C1 + C2 ln(t))

18. If y′′ − y′ − 6y = 0, with y(0) = 1 and y′(0) = α, determine the value(s) of α so that
the solution tends to zero as t →∞.

The solution is:

y =
(

2 + α

5

)
e3t +

(
3− α

5

)
e−2t

For the solution to tend to zero, the first constant must be zero, so α = −2.

19. Without using the Wronskian, determine whether f(x) = xex+1 and g(x) = (4x− 5)ex

are linearly independent.

Form the equation that we are solving, and factor/divide out the ex term:

C1xe + C24x− 5C2 = 0

This implies that: −5C2 = 0, so C2 must be zero. The second requirement would be
that eC1 + 4C2 = 0, but with C2 = 0, then C1 must be zero.

The only solution is C1 = C2 = 0, so the functions are linearly independent.



20. Given y′′ + p(t)y′ + q(t)y = 0, is it always possible to construct a fundamental set of
solutions? (Be specific as to how to do it. You might find the Existence and Uniqueness
Theorem useful).

If p, q are continuous on an interval I containing t0, then y1 is constructed as the
(unique) solution to:

y′′ + p(t)y′ + q(t)y = 0 y(t0) = 1 y′(t0) = 0

Similarly, y2 is constructed as the (unique) solution to:

y′′ + p(t)y′ + q(t)y = 0 y(t0) = 0 y′(t0) = 1

The initial conditions will force the Wronskian of y1, y2 to be nonzero, which gives us
a fundamental set of solutions.

(Recall that this is more of a theoretical result rather than a theorem that we actually
use to construct the homogeneous solutions).


