
Chapter 3, Computing Solutions

From the theory, we know that every initial value problem:

ay′′ + by′ + cy = g(t) y(t0) = y0 y′(t0) = v0

has a solution that can be expressed as:

y(t) = c1y1 + c2y2 + yp

where y1, y2 form a fundamental set of solutions to the homogeneous equation, and yp(t) is the (particular)
solution to the nonhomogeneous equation.

We first consider the homogeneous ODE:

Solving ay′′ + by′ + cy = 0

Form the associated characteristic equation (built by using y = ert as the ansatz):

ar2 + br + c = 0 ⇒ r =
−b±

√
b2 − 4ac

2a

so that the solutions depend on the discriminant, b2 − 4ac in the following way (yh refers to the solution of
the homogeneous equation):

• b2 − 4ac > 0 ⇒ two distinct real roots r1, r2. The general solution is:

yh(t) = c1er1t + c2er2t

If a, b, c > 0 (as in the Spring-Mass model) we can further say that r1, r2 are negative. We would say
that this system is OVERDAMPED.

• b2 − 4ac = 0⇒ one real root r = −b/2a. Then the general solution is:

yh(t) = e−(b/2a)t (C1 + C2t)

If a, b, c > 0 (as in the Spring-Mass model), the exponential term has a negative exponent. In this case
(one real root), the system is CRITICALLY DAMPED.

• b2 − 4ac < 0 ⇒ two complex conjugate solutions, r = λ± iµ. Then the solution is:

yh(t) = eλt (C1 cos(µt) + C2 sin(µt))

If a, b, c > 0, then λ < 0. In the case of complex roots, the system is said to the UNDERDAMPED. If
λ = 0 (this occurs when there is no damping), we get pure periodic motion, with period 2π/µ.

Solving y′′ + p(t)y′ + q(t)y = 0

Given y1(t), we can solve for a second linearly independent solution to the homogeneous equation, y2, by one
of two methods:

• By use of the Wronskian: There are two ways to compute this,

– W (y1, y2) = Ce−
∫

p(t) dt (This is from Abel’s Theorem)
– W (y1, y2) = y1y

′
2 − y2y

′
1

Therefore, these are equal, and y2 is the unknown: y1y
′
2 − y2y

′
1 = Ce−

∫
p(t) dt

Summarized Example: y′′ + 2
t y

′ − 2
t2 = 0, with y1 = t.

By Abel’s Theorem: W (y1, y2) = Ce−2 ln(t) = C/t2, but we can also compute the Wronskian as: ty′2−y2.

These should be the same: ty′2− y2 = C
t2 is a linear first order equation. Solve it and ignore the constant

to get that y2 = t−2.

• By Variation of Parameters (the method that the text uses in Section 3.5), where y2 = u2(t)y1(t). See
Example 3, p. 171 for an example.
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Solving for the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

• Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay′′ + by′ +
cy, acting on certain classes of functions, returns the same class. In summary, we have Table 3.6.1,
reproduced below:

if gi(t) is: The ansatz ypi is:
Pn(t) ts(a0 + a1t + . . . antn)

Pn(t)eαt tseαt(a0 + a1t + . . . + antn)
Pn(t)eαt sin(µt) or cos(µt) tseαt ((a0 + a1t + . . . + antn) sin(µt)

+ (b0 + b1t + . . . + bntn) cos(µt))

The ts term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or
t2 so that no term of the ansatz is included as a term of the homogeneous solution.

• Variation of Parameters: Given y′′ + p(t)y′ + q(t)y = g(t), with y1, y2 solutions to the homogeneous
equation, we write the ansatz for the particular solution as:

yp = u1y1 + u2y2

From our analysis, we saw that u1, u2 were required to solve:

u′1y1 + u′2y2 = 0
u′1y

′
1 + u′2y

′
2 = 0

From which we get the formulas for u′1 and u′2:

u′1 =
−y2g

W (y1, y2)
u′2 =

y1g

W (y1, y2)

Modeling Oscillations

In the spring-mass system, we saw that the displacement of the spring at time t is governed by the DE:

mu′′ + γu′ + ku = F (t)

where m is the mass of the object, γ is the constant corresponding to damping (or friction), and k is the
spring constant. Recall that when the object is at rest, its weight and the restorative force of the spring are
the same:

mg − kL = 0

where g is the constant for the acceleration due to gravity (9.8 meters/second2) and L is the length that the
spring was stretched past its natural length.

If F (t) is oscillating and γ is negligible, then we might run into beating or resonance. Beating occurs
when the forcing frequency is close to the natural frequency, and resonance occurs when the forcing function is
equal to the natural frequency. Recall that the videos showed two tuning forks, we saw the driven spring-mass
system and the Tacoma Narrows Bridge.
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