Complex Numbers

1 Introduction

1.1 Real or Complex?

Definition: The complex number z is defined as:

$$
\begin{equation*}
z=a+b i \tag{1}
\end{equation*}
$$

where a, b are real numbers and $i=\sqrt{-1}$. (Side note: Engineers typically use j instead of i).
Examples:

$$
5+2 i, \quad 3-\sqrt{2} i, \quad 3, \quad-5 i
$$

Real numbers are also complex (by taking $b=0$).

1.2 Visualizing Complex Numbers

A complex number is defined by it's two real numbers. If we have $z=a+b i$, then:
Definition: The real part of $a+b i$ is a,

$$
\operatorname{Re}(z)=\operatorname{Re}(a+b i)=a
$$

The imaginary part of $a+b i$ is b,

$$
\operatorname{Im}(z)=\operatorname{Im}(a+b i)=b
$$

To visualize a complex number, we can plot it on the plane. The horizontal axis is for the real part, and the vertical axis is for the imaginary part; $a+b i$ is plotted as the point (a, b).

In Figure 1, we can see that it is also possible to represent the point $a+b i$, or (a, b) in polar form, by computing its modulus (or size), and angle (or argument):

$$
|z|=\sqrt{a^{2}+b^{2}} \quad \phi=\arg (z)
$$

We have to be a bit careful defining ϕ - Being an angle, it is not uniquely described ($0=2 \pi=4 \pi$, etc). It is customary to restrict ϕ to be in the interval $(-\pi, \pi]$.

Figure 1: Graphically representing the complex number $z=x+i y$, and visualizing its complex conjugate, \bar{z}

1.3 Operations on Complex Numbers

1.3.1 The Conjugate of a Complex Number

If $z=a+b i$ is a complex number, then its conjugate, denoted by \bar{z} is $a-b i$. For example,

$$
z=3+5 i \Rightarrow \bar{z}=3-5 i \quad z=i \Rightarrow \bar{z}=-i \quad z=3 \Rightarrow \bar{z}=3
$$

Graphically, the conjugate of a complex number is it's mirror image across the horizontal axis.

1.3.2 Addition/Subtraction, Multiplication/Division

To add (or subtract) two complex numbers, add (or subtract) the real parts and the imaginary parts separately:

$$
(a+b i) \pm(c+d i)=(a+c) \pm(b+d) i
$$

To multiply, expand it as if you were multiplying polynomials:

$$
(a+b i)(c+d i)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(a d+b c) i
$$

and simplify using $i^{2}=-1$. Note what happens when you multiply a number by its conjugate:

$$
z \bar{z}=(a+b i)(a-b i)=a^{2}-a b i+a b i-b^{2} i^{2}=a^{2}+b^{2}=|z|^{2}
$$

Division by complex numbers $z, w: \frac{z}{w}$, is defined by translating it to real number division (rationalize the denominator):

$$
\frac{z}{w}=\frac{z \bar{w}}{w \bar{w}}=\frac{z \bar{w}}{|w|^{2}}
$$

Example:

$$
\frac{1+2 i}{3-5 i}=\frac{(1+2 i)(3+5 i)}{34}=\frac{-7}{34}+\frac{11}{34} i
$$

1.4 The Polar Form of Complex Numbers

1.4.1 Euler's Formula

Any point on the unit circle can be written as $(\cos (\theta), \sin (\theta))$, which corresponds to the complex number $\cos (\theta)+i \sin (\theta)$. It is possible to show the following directly, but we'll use it as a definition:

Definition (Euler's Formula): $\mathrm{e}^{i \theta}=\cos (\theta)+i \sin (\theta)$.

1.4.2 Polar Form of $a+b i$:

The polar form is defined as:

$$
z=r \mathrm{e}^{i \theta} \quad \text { where } \quad r=|z|=\sqrt{a^{2}+b^{2}} \quad \theta=\arg (z)
$$

To be sure that the polar form is unique, we restrict θ to be in the interval $(-\pi, \pi]$. You might think of $\arg (z)$ as the four-quadrant inverse tangent- That is:

- If (a, b) is in the first or fourth quadrant, then $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.
- If $a=0$ and $b \neq 0$, then θ is either $\pi / 2$ (for $b>0$) or $-\pi / 2$.
- If (a, b) is in the second quadrant, add $\pi: \theta=\tan ^{-1}\left(\frac{b}{a}\right)+\pi$
- If (a, b) is in the third quadrant, subtract $\pi: \theta=\tan ^{-1}\left(\frac{b}{a}\right)-\pi$
- The argument of zero is not defined.

Best way to remember these: Quickly plot $a+b i$ to see if you need to add or subtract π.

1.5 Exponentials and Logs

The logarithm of a complex number is easy to compute if the number is in polar form:

$$
\ln (a+b i)=\ln \left(r \mathrm{e}^{i \theta}\right)=\ln (r)+\ln \left(\mathrm{e}^{i \theta}\right)=\ln (r)+i \theta
$$

The logarithm of zero is left undefined (as in the real case). However, we can now compute the log of a negative number:

$$
\ln (-1)=\ln \left(1 \cdot \mathrm{e}^{i \pi}\right)=i \pi \quad \text { or the } \log \text { of } i: \quad \ln (i)=\ln (1)+\frac{\pi}{2} i=\frac{\pi}{2} i
$$

Note that the usual rules of exponentiation and logarithms still apply.
To exponentiate a number, we convert it to multiplication (a trick we used in Calculus when dealing with things like x^{x}):

$$
a^{b}=\mathrm{e}^{b \ln (a)}
$$

Example, $2^{i}=\mathrm{e}^{i \ln (2)}=\cos (\ln (2))+i \sin (\ln (2))$
Example: $\sqrt{1+i}=(1+i)^{1 / 2}=\left(\sqrt{2} \mathrm{e}^{i \pi / 4}\right)^{1 / 2}=\left(2^{1 / 4}\right) \mathrm{e}^{i \pi / 8}$
Example: $i^{i}=\mathrm{e}^{i \ln (i)}=\mathrm{e}^{i(i \pi / 2)}=\mathrm{e}^{-\pi / 2}$

2 Real Polynomials and Complex Numbers

If $a x^{2}+b x+c=0$, then the solutions come from the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In the past, we only took real roots. Now we can use complex roots. For example, the roots of $x^{2}+1=0$ are $x=i$ and $x=-i$.

Check:

$$
(x-i)(x+i)=x^{2}+x i-x i-i^{2}=x^{2}+1
$$

Some facts about polynomials when we allow complex roots:

1. An $n^{\text {th }}$ degree polynomial can always be factored into n roots. (Unlike if we only have real roots!) This is the Fundamental Theorem of Algebra.
2. If $a+b i$ is a root to a real polynomial, then $a-b i$ must also be a root. This is sometimes referred to as "roots must come in conjugate pairs".

3 Exercises

1. Suppose the roots to a cubic polynomial are $a=3, b=1-2 i$ and $c=1+2 i$. Compute $(x-a)(x-b)(x-c)$.
2. Find the roots to $x^{2}-2 x+10$. Write them in polar form.
3. Show that:

$$
\operatorname{Re}(z)=\frac{z+\bar{z}}{2} \quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}
$$

4. For the following, let $z_{1}=-3+2 i, z_{2}=-4 i$
(a) Compute $z_{1} \bar{z}_{2}, z_{2} / z_{1}$
(b) Write z_{1} and z_{2} in polar form.
5. In each problem, rewrite each of the following in the form $a+b i$:
(a) $e^{1+2 i}$
(b) $e^{2-3 i}$
(c) $e^{i \pi}$
(d) 2^{1-i}
(e) $\mathrm{e}^{2-\frac{\pi}{2} i}$
(f) π^{i}
