
Solutions to Review Questions: Exam 3
Chapter 6, Sections 5.1-5.3

1. Use the definition of the Laplace transform to determine L(f):

(a)

f(t) =

{
3, 0 ≤ t < 2
6− t, t ≥ 2

∫ ∞

0
e−stf(t) dt =

∫ 2

0
3e−st dt +

∫ ∞

2
(6− t)e−st dt

The second antiderivative is found by integration by parts:

∫ ∞

2
(6− t)e−st dt ⇒

+ 6− t e−st

− −1 (−1/s)e−st

+ 0 (1/s2)e−st

⇒ e−st
(
−6− t

s
+

1

s2

)∣∣∣∣∞
2

Putting it all together,

−3

s
e−st

∣∣∣∣2
0
+
(
0− e−2s

(
−4

s
+

1

s2

))
= −3e−2s

s
+

3

s
+

4e−2s

s
−e−2s

s2
=

3

s
+e−2s

(
1

s
− 1

s2

)
NOTE: Did you remember to antidifferentiate in the third column?

(b)

f(t) =

{
e−t, 0 ≤ t < 5
−1, t ≥ 5

∫ ∞

0
e−stf(t) dt =

∫ 5

0
e−ste−t dt +

∫ ∞

5
−e−st dt =

∫ 5

0
e−(s+1)t dt +

∫ ∞

5
−e−st dt

Taking the antiderivatives,

− 1

s + 1
e−(s+1)t

∣∣∣∣5
0
+

1

s
e−st

∣∣∣∣∞
5

=
1

s + 1
− e−5(s+1)

s + 1
+ 0− e−5s

s

2. Check your answers to Problem 1 by rewriting f(t) using the step (or Heaviside) function,
and use the table to compute the corresponding Laplace transform.

(a) f(t) = 3(u0(t)− u2(t)) + (6− t)u2(t)

For the second term, notice that the table entry is for uc(t)h(t− c). Therefore, if

h(t− 2) = 6− t then h(t) = 6− (t + 2) = 4− t

Therefore, the overall transform is:

3

(
1

s
− e−2s

s

)
+ e−2s

(
4

s
− 1

s2

)
=

3

s
+ e−2s

(
1

s
− 1

s2

)
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(b) f(t) = e−t (u0(t)− u5(t))− u5(t)

We can rewrite f in preparation for the transform:

f(t) = e−tu0(t)− e−tu5(t)− u5(t)

For the middle term,

h(t− 5) = e−t ⇒ h(t) = e−(t+5) = e−5e−t

so the overall transform is:

F (s) =
1

s + 1
− e−5 e−5s

s + 1
− e−5s

s

3. Determine the Laplace transform:

(a) t2e−9t

2

(s + 9)3

(b) e2t − t3 − sin(5t)
1

s− 2
− 6

s4
− 5

s2 + 25

(c) u5(t)(t− 5)4

24e−5s

s5

(d) e3t sin(4t)
4

(s− 3)2 + 16

(e) etδ(t− 3)

In this case, notice that f(t)δ(t − c) is the same as f(c)δ(t − c), since the delta
function is zero everywhere except at t = c. Therefore,

L(etδ(t− c)) = e3e−3s

(f) t2u4(t)

In this case, let h(t− 4) = t2, so that

h(t) = (t + 4)2 = t2 + 8t + 16 ⇒ H(s) =
2 + 8s + 16s2

s3

and the overall transform is e−4sH(s).

4. Find the inverse Laplace transform:

(a)
2s− 1

s2 − 4s + 6

2s− 1

s2 − 4s + 6
=

2s− 1

(s2 − 4s + 4) + 2
= 2

s− 1/2

(s− 2)2 + 2
=

2

(
s− 2

(s− 2)2 + 2
+

3

2
√

2

√
2

(s− 2)2 + 2

)
⇒ 2e2t cos(

√
2t) +

3√
2
e2t sin(

√
2t)

2



(b)
7

(s + 3)3
=

7

2!

2!

(s + 3)3
⇒ 7

2
t2e−3t

(c)
e−2s(4s + 2)

(s− 1)(s + 2)
= e−2sH(s), where

H(s) =
4s + 2

(s− 1)(s + 2)
=

2

s− 1
+

2

s + 2
⇒ h(t) = 2et + 2e−2t

and the overall inverse: u2(t)h(t− 2).

(d)
3s− 2

2s2 − 16s + 10
Notice that the denominator does not factor “nicely”, so we’ll go

ahead and complete the square with the idea that we’ll need hyperbolic sines and
cosines in the inverse transform:

3s− 2

2(s2 − 8s + 5)
=

3

2
· s− 2/3

(s− 4)2 − 11
=

3

2

(
s− 4

(s− 4)2 − 11
+

10

3
· 1√

11

√
11

(s− 4)2 − 11

)

The inverse transform is:

3

2

(
e4t cosh(

√
11t) +

10

3
√

11
e4t sinh(

√
11t

)

(e)
(
e−2s − e−3s

) 1

s2 + s− 6
=
(
e−2s − e−3s

)
H(s)

Where:

H(s) =
1

s2 + s− 6
=

1

5

1

s− 2
− 1

5

1

s + 3

so that

h(t) =
1

5
e2t − 1

5
e−3t

and the overall transform is:

u2(t)h(t− 2)− u3(t)h(t− 3)

NOTE: The denominator was different before; corrected in class.

5. For the following differential equations, solve for Y (s) (the Laplace transform of the
solution, y(t)). Do not invert the transform.

(a) y′′ + 2y′ + 2y = t2 + 4t, y(0) = 0, y′(0) = −1

s2Y + 1 + 2sY + 2Y =
2

s3
+

4

s2

so that

Y (s) =
2

s3(s2 + 2s + 2)
+

4

s2(s2 + 2s + 2)
− 1

s2 + 2s + 2

(b) y′′ + 9y = 10e2t, y(0) = −1, y′(0) = 5

s2Y + s− 5 + 9Y =
10

s− 2
⇒ Y (s) =

10

(s− 2)(s2 + 9)
− s− 5

s2 + 9
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(c) y′′ − 4y′ + 4y = t2et, y(0) = 0, y′(0) = 0

(s2 − 4s + 4)Y =
2

(s− 1)3
⇒ Y (s) =

2

(s− 1)3(s− 2)2

6. Solve the given initial value problems using Laplace transforms:

(a) 2y′′ + y′ + 2y = δ(t− 5), zero initial conditions.

Y =
e−5s

2s2 + s + 2
= e−5sH(s)

where

H(s) =
1

2s2 + s + 2
=

1

2

1

s2 + 1
2
s + 1

=
1

2

1(
s + 1

4

)2
+ 15

16

=
1

2

4√
15

√
15
4(

s + 1
4

)2
+ 15

16

Therefore,

h(t) =
2√
15

e−1/4 t sin

(√
15

4
t

)
And the overall solution is u5(t)h(t− 5)

(b) y′′ + 6y′ + 9y = 0, y(0) = −3, y′(0) = 10

s2Y + 3s− 10 + 6(sY + 3) + 9Y = 0 ⇒ Y = − 3s + 8

(s + 3)2

Partial Fractions:

− 3s + 8

(s + 3)2
= − 3

(s + 3)
+

1

(s + 3)2
⇒ y(t) = −3e−3t + te−3t

(c) y′′ − 2y′ − 3y = u1(t), y(0) = 0, y′(0) = −1

Y = e−s 1

s(s− 3)(s + 1)
− 1

(s + 1)(s− 3)
= e−sH(s)− 1

4

1

s− 3
+

1

4

1

s + 1

where

H(s) =
1

s(s− 3)(s + 1)
= −1

3

1

s
+

1

12

1

s− 3
+

1

4

1

s + 1

so that

h(t) = −1

3
+

1

12
e3t +

1

4
e−t

and the overall solution is:

y(t) = −1

4
e3t +

1

4
e−t + u1(t)h(t− 1)

(d) y′′ + 4y = δ(t− π
2
), y(0) = 0, y′(0) = 1

Y = e−π/2 s 1

s2 + 4
+

1

s2 + 4

Therefore,

y(t) =
1

2
sin(2t) + uπ/2(t)

1

2
sin(2(t− π/2))
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(e) y′′ + y =
∞∑

k=1

δ(t− 2kπ), y(0) = y′(0) = 0. Write your answer in piecewise form.

Y (s) =
∞∑

k=1

e−2kπs 1

s2 + 1

Therefore, term-by-term,

y(t) =
∞∑

k=1

u2kπ(t) sin(t− 2πk) =
∞∑

k=1

u2πk(t) sin(t)

Piecewise,

y(t) =



0 if 0 ≤ t < 2π
sin(t) if 2π ≤ t < 4π

2 sin(t) if 4π ≤ t < 6π
3 sin(t) if 6π ≤ t < 8π

...
...

7. Short Answer:

(a)
∫ ∞

0
sin(3t)δ(t− π

2
) dt = sin(3π/2) = −1, since

∫ ∞

0
f(t)δ(t− c) dt = f(c)

(b) If y′′ + 2y′ + 3y = 0 and y(0) = 1, y′(0) = −1, compute y′′(0), y′′′(0), and y(4)(0).

We see that:

y′′ = −2y′ − 3y at x = 0 ⇒ y′′(0) = −2(−1)− 3(1) = −1

y′′′ = −2y′′ − 3y′ at x = 0 ⇒ y′′′(0) = (−2)(−1)− 3(−1) = 5

y(4) = −2y′′′ − 3y′′ at x = 0 ⇒ y(4)(0) = (−2)(5)− 3(−1) = −7

(c) Using your previous result, give the Taylor expansion of the solution to the differ-
ential equation using at least 5 terms.

y(x) = 1− x− 1

2!
x2 +

5

3!
x3 +

7

4!
x4 + . . .

(d) If y′(t) = δ(t− c), what is y(t)?

We could solve formally using Laplace transforms:

sY − y(0) = e−cs ⇒ Y =
e−cs

s
+

y(0)

s

so that y(t) = uc(t) + y(0), where y(0) we can take to be an arbitrary constant.
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(e) What is the expected radius of convergence for the series expansion of f(x) =
1/(x2 + 2x + 5) if the series is based at x0 = 1?

The roots of the denominator are where x2 +2x+5 = 0. Use the quadratic formula
or complete the square to find the roots,

(x + 1)2 = −4 ⇒ x = −1± 2i

Find the distance (in the complex plane) between x = 1 and either root (the
distances will be the same). In this case,

ρ =
√

22 + 22 =
√

8

(f) Use Laplace transforms to solve for F (s), if

f(t) + 2
∫ t

0
cos(t− x)f(x) dx = e−t

(So only solve for the transform of f(t), don’t invert it back).

F (s) + 2F (s)
s

s2 + 1
=

1

s + 1
⇒ F (s)

(
(s + 1)2

s2 + 1

)
=

1

s + 1

so that

F (s) =
s2 + 1

(s + 1)3

(g) In order for the Laplace transform of f to exist, f must be?

f must be piecewise continuous and of exponential order

(h) Can we assume that the solution to: y′′ + p(x)y′ + q(x)y = u3(x) is a power series?

No. Notice that the second derivative is not continuous at x = 3, but the second
derivative of the power series would be.

8. More on Laplace Transforms:

(a) Your friend tells you that the solutions to the IVPs:

y′′+2y′+y = 0, y(0) = 0, y′(0) = 1 and y′′+2y′+y = δ(t) y(0) = 0, y′(0) = 0

are exactly the same. Are they really? Explain.

Both models give the same solution if t ≥ 0. If we consider all time, then the
solutions are different.

Conceptually, the two IVPs are also modeling different behavior. In the second
IVP, we are modeling a “hit” at time zero, but in the first, the spring-mass system
(for example), is simply going through equilibrium at a velocity of 1.

By the way, the solution to both IVPs is

y(t) = te−t

Valid for all positive time in both models, valid for all time in the first, only valid
for t ≥ 0 in the second (in the Dirac model, the function would be zero for all
negative time due to the initial conditions).
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(b) Let f(t) = t and g(t) = u2(t).

i. Use the Convolution Theorem to compute f ∗ g.
To use the Convolution Theorem,

L(t ∗ u2(t)) =
1

s2
· e−2s

s
= e−2s 1

s3
= e−2sH(s)

so that h(t) = 1
2
t2. The inverse transform is then

u2(t)
1

2
(t− 2)2

ii. Verify your answer by directly computing the integral.
By direct computation, we’ll choose to ”flip and shift” the function t:

f ∗ g =
∫ t

0
(t− x)u2(x) dx

Notice that u2(x) is zero until x = 2, then u2(x) = 1. Therefore, if t ≤ 2, the
integral is zero. If t ≥ 2, then:∫ t

0
(t− x)u2(x) dx =

∫ t

2
t− x dx = tx− 1

2
x2

∣∣∣∣t
2

= t2 − 1

2
t2 − 2t + 2 =

1

2
(t− 2)2

valid for t ≥ 2, zero before that. This means that the convolution is:

t ∗ u2(t) =
1

2
(t− 2)2u2(t)

9. Find the recurrence relation between the coefficients for the power series solutions to
the following:

(a) 2y′′ + xy′ + 3y = 0, x0 = 0.

Substituting our power series in for y, y′, y′′:

2
∞∑

n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 + 3

∞∑
n=0

anx
n = 0

We want to write this as a single sum, with each index starting at the same value.
First we’ll simplify a bit:

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

3anx
n = 0

Noting that in the second sum we could start at n = 0, since the first term (constant
term) would be zero anyway, we can start all series with a constant term:

∞∑
k=0

(2(k + 2)(k + 1)ak+2 + kak + 3ak) xk = 0

From which we get the recurrence relation:

ak+2 = − k + 3

2(k + 2)(k + 1)
ak
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(b) (1− x)y′′ + xy′ − y = 0, x0 = 0

Substituting our power series in for y, y′, y′′:

(1− x)
∞∑

n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n = 0

We want to write this as a single sum, with each index starting at the same value.
First we’ll simplify a bit:

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

The two middle sums can have their respective index taken down by one (so that
formally the series would start with 0x0):

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

n(n− 1)anx
n−1 +

∞∑
n=0

nanx
n −

∞∑
n=0

anx
n = 0

Now make all the indices the same. To do this, in the first sum make k = n− 2, in
the second sum take k = n− 1. Doing this and collecting terms:

∞∑
k=0

((k + 2)(k + 1)ak+2 − (k + 1)kak+1 + (k − 1)ak) xk = 0

So we get the recursion:

ak+2 =
(k + 1)k ak+1 − (k − 1)ak

(k + 2)(k + 1)

(c) y′′ − xy′ − y = 0, x0 = 1

Done in class;

an+2 =
1

n + 2
(an+1 + an)

10. Find the first 5 terms of the power series solution to exy′′ + xy = 0 if y(0) = 1 and
y′(0) = −1.

Compute the derivatives directly, then (don’t forget to divide by n!):

y(x) = 1− x− 1

6
x3 +

1

6
x4 + . . .

11. Find the radius of convergence for the following series:

(a)
∞∑

n=1

√
nxn ρ = 1

(b)
∞∑

n=1

(−2)n

√
n + 1

(x + 3)n ρ = 1/2

(c)
∞∑

n=1

n! xn

nn
ρ = e (From the HW)
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