
Solutions: Section 2.6

1. Problem 1: (2x + 3) + (2y − 2)y′ = 0

We want fx = M(x, y) = 2x+3 and fy = N(x, y) = 2y−2. We check if this is possible:

My = 0 Nx = 0

Now antidifferentiate M with respect to x:

f(x, y) =
∫

M(x, y) dx =
∫

2x + 3 dx = x2 + 3x + g(y)

where g is some unknown function of y. Two ways of proceeding (which are equivalent).
I’ll list both methods for this problem:

• Try to get f from N , and compare:

f(x, y) =
∫

N(x, y) dy =
∫

2y − 2 dy = y2 − 2y + ĝ(x)

where ĝ is an unknown function of x. Comparing this to what we had before, we
see that:

f(x, y) = x2 + 3x + y2 − 2y

so the implicit solution is: x2 + 3x + y2 − 2y = C

NOTE: You can always check your answer!

• Another method: Starting from where we left off,

f(x, y) = x2 + 3x + g(y)

we can see what g needs to be in order for fy = N , or:

fy = g′(y) = 2y − 2 = N

In that case, g(y) = y2 − 2y, and f(x, y) = x2 + 3x + y2 − 2y.

The implicit solution is: x2 + 3x + y2 − 2y = C

2. Problem 3: (3x2 − 2xy + 2) dx + (6y2 − x2 + 3) dy = 0

Check to see if the equation is exact:

My = −2x Nx = −2x

So yes. Now we’ll antidifferentiate M with respect to x:

f(x, y) =
∫

M dx =
∫

3x2 − 2xy + 2 dx = x3 − x2y + 2x + g(y)

Check to see if fy is equal to N :

fy = −x2 + g′(y) = 6y2 − x2 + 3

so that g′(y) = 6y2 + 3. That gives g(y) = 2y3 + 3y. Put this back in to get the full
solution, f(x, y) = c:

x3 − x2y + 2x + 2y3 + 3y = C



3. Problem 4: (2xy2 + 2y) + (2x2y + 2x) dy
dx

= 0

Check for “exactness”:

My = 4xy + 2 Nx = 4xy + 2

Now set:
f(x, y) =

∫
M dx =

∫
2xy2 + 2y dx = x2y2 + 2xy + g(y)

And check to see that fy = N :

fy = 2x2y + 2x + g′(y) = 2x2y + 2x

In this case, g′(y) = 0, and we don’t need to add g(y). The implicit solution:

x2y2 + 2xy = C

4. Problem 13: (2x− y) dx + (2y − x) dy = 0

Check first: My = −1 = Nx, so the DE is exact.

Now,

f(x, y) =
∫

M dx =
∫

2x− y dx = x2 − xy + g(y)

where we check fy to make it equal to N(x, y):

fy = −x + g′(y) = 2y − x ⇒ g′(y) = 2y ⇒ g(y) = y2

Our implicit solution is:
x2 − xy + y2 = C

With the initial condition y(1) = 3, we get:

12 − (1)(3) + 32 = C ⇒ C = 7

The solution to the IVP is:
x2 − xy + y2 = 7

There are a couple of ways we can determine the interval on which the solution is valid
(recall that this is a rotated ellipse). Here are two methods:

• We notice that:

y′ =
y − 2x

2y − x

so the solution y(x) will have a vertical tangent where 2y = x or y = 1
2
x. Looking

for where this occurs on our solution:

x2 − xy + y2 = 7



we get:

x2 − x
(

1

2
x

)
+

(
1

2
x

)2

= 7 ⇒ x = ±
√

283

We will take the inside interval since the initial x0 = 1

x ∈

−
√

28

3
,

√
28

3


• Method 2:

We can isolate y and find the restrictions on x (think quadratic formula in y,
parentheses added for emphasis):

y2 + (−x) y +
(
x2 − 7

)
= 0

Now,

y =
x±

√
x2 − 4(x2 − 7)

2
=

x±
√

28− 3x2

2

Take the positive root since y(1) = 3.

The restriction on x would be that 28− 3x2 ≥ 0. Therefore,

−
√

28

3
< x <

√
28

3

• Problem 15: (xy2 + bx2y) dx + (x + y)x2 dy = 0

First, for this to be exact:

My = 2xy + bx2 = 3x2 + 2xy = Nx

So b = 3. With this, find the solution to the DE:

f(x, y) =
∫

M dx =
∫

xy2 + 3x2y dx =
1

2
x2y2 + x3y + g(y)

And solve for g(y):
fy = x2y + x3 + g′(y) = x3 + x2y

So we didn’t need g(y). This leaves:

1

2
x2y2 + x3y = C

5. Problem 18: Done in Class. The idea is:

M(x) + N(y)
dy

dx
= 0



Given that, My = 0 and Nx = 0, so the equation is exact.

We would solve:
f(x, y) =

∫
M(x) dx + g(y)

Taking fy and equating it to N : fy = g′(y) = N(y). Therefore, g(y) =
∫

N(y) dy, and
the solution is:

f(x, y) =
∫

M(x) dx +
∫

N(y) dy = C

which is what we do with separable equations.

6. Problem 19: We see that:

x2y3 + (x + xy2)
dy

dx
= 0

is not separable, since (x2y3)y = 3x2y2, but (x + xy2)x = 1 + y2. However, after
multiplication by µ(x, y) = 1/(xy3), we get:

x2y3

xy3
+

x(1 + y2)

xy3

dy

dx
= 0

Simplify:

x + (y−3 + y−1)
dy

dx
= 0

Note that this becomes separable, so it is also exact.

Using the methods from this section,

f(x, y) =
∫

M dx =
1

2
x2 + g(y)

and fy = g′(y) = N = y−3 + y−1. Therefore,

g(y) =
∫

y−3 +
1

y
dy = −1

2
y−2 + ln(y)

The solution is:
1

2
x2 − 1

2y2
+ ln(y) = C

7. Problem 22:

In this case, when we multiply by the given integrating factor:

xex(x + 2) sin(y) + xexx cos(y) = 0

Expand it to make the partial derivatives a bit easier:

x2ex sin(y) + 2xex sin(y) + (x2ex cos(y))
dy

dx
= 0



Now check the partials:

My = x2ex cos(y) + 2xex cos(y)

and
Nx = cos(y)

(
2xex + x2ex

)
And these are the same (so it is exact). In fact, this equation is also separable (this is
done for fun):

dy

dx
= −sin(y)(x2 + 2x)ex

cos(y)x2ex
= − tan(y)

(
1 +

2

x

)
⇒

∫
cot(y) dy = −

∫
1 +

2

x
dx

Let’s see if we can avoid1 the antiderivative of cot(y):

f(x, y) =
∫

M dx = sin(y)
∫

ex(x2 + 2x) dx + g(y) = x2ex sin(y) + g(y)

Now check fy = N :
fy = x2ex cos(y) + g′(y) = x2ex cos(y)

so we did not need g(y) in this case. The solution is:

x2ex sin(y) = C

1Actually, this is not bad- Do it with a u, du substitution.


