Homework Solutions: 1.1-1.3

Section 1.1:
1. Problems 1, 3, 5

In these problems, we want to compare and contrast the direction fields for the given
(autonomous) differential equations of the form ¢y’ = ay + b. Once this is done, we
want to be able to predict the direction field for the more general case.

e Problem 1: 3 = 3 — 2y. We should see that all solutions tend towards the
equilibrium: 3 — 2y =0, or y = 3/2.

e Problem 3: 3 = 3 + 2y. In this case, the equilibrium changes to y = —3/2, and
like Problem 2, all other solutions will tend towards either positive or negative
infinity (predictable when the solution starts above or below —3/2, respectively).

e Problem 5: 3 = 1+ 2y The equilibrium is again y = —1/2, except now the
solutions move away from the equilibrium, going to +o0c0 as t — oo (again, that
depends on the initial condition being above or below equilibrium).

2. Problem 7: If we want all solutions to tend towards y = 3, that will need to be the
equilibrium. Furthermore, in the equation 3’ = ay + b, the value of a needs to be
negative. There are lots of possibilities; here is one:

y'=-y+3

3. Problem 9: All solutions tend away from y = 2. In this case, the value of a in ¢y’ = ay+0b
needs to be positive, and we can write something like:

Yy =y-—2

Summary for Problems 1-9: For y' = ay + b, the equilibrium solution is where
y' =0, or where ay + b = 0. This gives:

y=—b/a

We can tell if the equilibrium is attracting (all solutions tend towards the equilibrium)
or repelling (all solutions tend away from equilibrium) based on the sign of a. If a > 0,
the equilibrium is repelling. If a < 0, the equilibrium is attracting.

4. Problem 14: Draw the direction field by hand. We will look at this problem more
closely in Section 2.3.



5. Problems 15-20: Match the direction field to the DE: Pay particular attention to where
the derivative is zero.

6. Problem 23 (See Problem 15, p. 17)

7. Problems 27-29: Were you able to sketch a graph by hand using a couple of isoclines?
27 was a little tricky because of the exponential, but hopefully you were able to do 29.

Section 1.2:

1. Problem 1(a,b). Very similar to the drawings from 1.1. In both cases, all solutions
tend to the equilibrium solution.

2. Problem 3: ¢ = —ay + b

(a) The solution is found by:

b 1 1
I _Z dy = —adt / d:/— dt
Yy a(y a) = y—bja Yy a = b Yy adt =

b
Inly —b/a| = —at +C = y——=e ¢ =40 = Ae™
a

So that the solution is: ;
y(t) = - + Ae™™
a

(b) Your graph in this case should have a horizontal solution (the equilibrium solution)
at y = b/a. The slopes above the equilibrium should go down, the slope below
should point up.

(c) Describe how the solution changes under each of the following conditions:

i. a increases: This makes the solutions go to equilibrium faster than before
(the slopes are made more steep). Changing a and leaving b fixed also makes
the equilibrium get smaller.

ii. b increases: Does not change the rate at which the solutions go to the equi-
librium, but does change the equilibrium (if b increases, the equilibrium also
increases).

iii. Both a,b increase, but the ratio b/a stays fixed. This will change the rate at
which solutions go to the equilibrium, which stays fixed.

3. Problem 4: The only difference between problems 3 and 4 is that we’ve multiplied by
negative 1. The equilibrium solution is:

/

y=0 = 0=ay—0b = y=bla



It is hard to read the difference between small case y and capital Y- We’'ll use W
instead. We are finding a differential equation for W =y — b/a. We see that:

W’zy'zay—bza(W—I—b)—b:aW
a

so the new DE: W/ = oW

4. Problem 5: Undetermined Coeflicients.

In this problem, we want to compare the solutions to:

vy = ay Versus Yy =ay—1>b

The solution to the first equation is: y(t) = Ae®. To find the solution to the second,
we assume that the solution is of the form:

y(t) = Ae™ +k
for some unknown k. Our problem is now to find %k, which we do by substituting our
guess into the differential equation.
The left hand side of the D.E. is just 3/, so if y = Ae® + k, then v/ = aAe™.

The right hand side of the D.E. is ay —b, so if y = Ae® +k, this becomes a(Ae™ + k) —b.
Now equate the left and right hand sides, and solve for k:

aAe™ =aAe™ +ak—-b = 0=dk-b = k=b/a
Therefore, the overall solution is (what we had before):

b
t) = Ae™ + =
y(t) = Ae™ + -~

5. Problem 6: Solve ' = —ay + b using Problem 5:

First, the solution to the simpler DE: ¢/ = —ay is y(t) = Ae™*. We guess that the
solution to ' = —ay + b will be of the form y = Ae™® + k. To find k, substitute into
the DE:

y = —ade™™ —ay+b=—ade ™ —ak+b

These have to be the same so: 0 = —ak + b, or k = b/a. Therefore the solution is:

b
t) = Ae ™ + =
y(t) = Ae™ + -~

6. Problem 7 (Field Mice): p' = 3p — 450



(a)

From the previous two problems (or with the technique from the Chapter), we
can write down the solution:
dp 1

5 (p —900)

dp 1
= —dt
dt 2

p—900 2

And integrate both sides:
1
In [p —900| = §t +C = pt) =AY 900

Now, if p(0) = 850, we can get the particular solution (solve for A):
p(0)=A+900=850 = A=—50

Therefore, p(t) = —50e(1/2* + 900. To say that the population became extinct
means that the population is zero. Set p(t) = 0 and solve for t:

—50eMPt 4900 =0 = V=18 =t=2In(18)~5.78
Similarly, if p(0) = po, with 0 < py < 900,
po=A+900= A= p,—900

and:

—900 900

—900)eV/2t 1900 =0 = /2t _ _
o A ) Po— 900 900 — py

(I wrote the last fraction like that so it would be clear that this is a positive
number before we take the log of both sides)

Therefore, our conclusion is: Given p' = %p — 450, p(0) = po, where 0 < pg < 900,
then the time at which extinction occurs is:

f—om (200
900 — po

Find the initial population if the population becomes extinct in one year. Note
that ¢ is measured in months, so that would mean that we want to solve our
general equation for py if p(12) = 0. We can use our last result:

12=2In _900
900 — po

Solve for py:

900
— =" = 900e*=900—p, = py=900—900e®
900 — pyo



7. Problem 8: More mice! The population at time ¢ is p(t), and we have the exponential
growth model:
dp
dt
The solution is p(t) = Pye™, where Py is the initial population. If that population
doubles in 30 days, and ¢ is measured in days, we can write:

rp

2P = Pe®” = r=1In(2)/30
If the population doubles in N days, we see that r = In(2)/N.

8. Problem 15 (Newton’s Law of Cooling):

We are given:

d
di; = —k(u—T),  u(0)=up

We can solve this either directly or using the techniques from this HW. Directly,

1 1
dt = —kdt = / du:/—kdt = Infu—T|=—kt+C
u—"T u—"T

Now solve for u(t):

u—T = efktJrc — efk:tec — Aefkt

Also, find A in terms of the initial condition, u(0) = ug:
uw0)=A+T=u+0 = A=y —T
In conclusion, the temperature at any time ¢:
u(t) = (ug — T)e ™ 4+ T
Part (b) is a little trickier, in that we need to properly translate the statement:

Let 7 be the time at which the initial temperature difference, ug — 1" has
been reduced by half. Find the relation between k and 7

If u(t) is the actual temperature at time ¢, then u(t) — 7" is the temperature difference
at any time ¢ between u(t) and T. The statement is then translated to read:

u(t) =T = ;(UO—T)
Now substitute and solve for k:
(ug—T)e ™ +T - T = ;(uo -T)
So that:

ok — 1 = —kr=1In(1/2)=-In(2) = k=I(2)/7



Section 1.3
1. Problem 1: Order is 2, and it is linear (divide by the leading %)

2. Problem 3: Order is 4, and it is linear.
3. Problem 5: Order is 2, and nonlinear (because of sin(t + y) term).

4. Problem 7: Do you know the definition of cosh(t)? See our class website before doing
this problem- There are practice problems there). You might use the definition directly,
or from the practice sheet, see that:

d . d . .
ﬁ(cosh(x)) = sinh(z) %(smh(x)) = cosh(z)

Now, to solve problem 7, we want to verify that either y(t) = €' or y(t) = cosh(t)
satisfies the differential equation: y” —y = 0.

If y(t) = €', then ¢/(t) = €', and 3" (t) = €', so
y' —y=¢e —e'=0
If y(t) = cosh(t), then y' = sinh(¢) and y"(t) = cosh(t), so again,
y" —y = cosh(t) — cosh(t) =0
5. Problem 9: Show that y(t) = 3t + t? satisfies the ODE: ty/ —y = 2.
First compute the derivative, then substitute into the expression:
y =3+ 2t

so that:
ty —y=t(3+2t) — (3t +1°) =3t +26* = 3t — > = ¢*

6. Problem 14: Show that the function
9 t
y(t) = e / e ds + e
0

solves: ' — 2ty = 1.

To show this directly, we need to recall how to differentiate a function like:

o(t) = [ $5)ds

From the Fundamental Theorem of Calculus, ¢'(t) = f(t).



Therefore, if y(t) is as given above, the derivative is found by using the product rule:
t
y = (2tet2> : / e ds+ e e + 2te”
0
If we simplify a bit, and subtract:

t
y = 2te” / e ds + 1+ 2te”
0

2 t 2 2
—2ty = —2t (et / e ds+ e )
0

We see that the only remaining term is 1.

(NOTE: In Section 2.1, we’ll see where this strange integral is coming from)

. Problem 15: We did something similar in class: If y = €™, substitute it into the
differential equation-
Y +2y=0 = re"+2"=0

Now solve for 7:
(T"‘Q)ert:() = ’I"—|—2:0 = r= -2

Note that e"* = 0 has no solution.

Conclusion: y(t) = e 2.

Side Remark: We solved this in Section 1.2 by doing this:
, 1 1

y=-2 = _dy=-2at = [-ay=—2[a
Y Y

so that:
Injy|=—-2t+c = y(t)=Ae*

. Problem 17: Same setup as Problem 15: If y(t) = €',
Y (t) =re" y'(t) = re"
Substitute these into the DE: " — ¢/ — 6y = 0 and solve for r:
rlet 4 et —6et =0 = e (7”2 +7r— 6) =0
Again, €™ = 0 has no solution, so just solve:
P4r—6=0 (r+3)(r—2=0 r=-372

Either y = ¢™® or y = e* will solve the DE.



9. Problem 19: In this case, assume y = t", so 3y’ = 7t" ! and y” = r(r—1)t"~2. Substitute

10.
11.

these into the DE:
t2) + 4ty +2y=0 =

Simplify and factor out t":

or(r =D 24t -t 2" =0

t"(r(r—1)4+4r+2)=0

This equation must be true for ALL ¢ > 0 (given in the problem), so t" = 0 does not

give a solution. Solve for r:

r2—r44r4+2=0 =

P +3r+2=0 =

(r+1)(r+2)=0

Therefore, y(t) = 1 and y(t) = 5 solve the differential equation.

t

Problem 21: The order is 2, linear.

Problem 25: Show that each of these:

u(z,y) = cos(x) cosh(y)

u(z,y) = In(2® + )

solve the Partial Differential Equation (PDE):

Ugg + Uyy =0

If u(z,y) = cos(x) cosh(y), then
u; = —sin(z) cosh(y)

Similarly,
u, = cos(z) sinh(y)
And if we add u,, to u,,, we get zero.

If u(x,y) = In(z? + y?), then:

2
Uy = ———
x? 492
Similarly,
2y
Uy = x? + 12

UII -

Uz = — cos(x) cosh(y)

Uyy = cos(x) cosh(y)

~=2(2* =)
<$2 _|_y2)2
2y —a?)

Uyy = (x2+y2)2

And again we see that if we add u,, and u,,, we get zero.



