
Homework Solutions: 2.1-2.2, plus Substitutions

Section 2.1

I have not included any drawings/direction fields. We can see them using Maple or by hand,
so we’ll be focusing on getting the analytic solutions here:

1. Problem 1: Solve the DE using the Method of Integrating Factor (for linear differential
equations):

y′ + 3y = t + e−2t ⇒ e3t (y′ + 3y) = e3t
(
t + e−2t

)
⇒

(
e3ty(t)

)′
= te3t + et

Integrate both sides Hint: We need to use “integration by parts” to integrate te3t.
Using a table as in class:

+ t e3t

− 1 (1/3)e3t

+ 0 (1/9)e3t

⇒
∫

te3t dt =
1

3
e3t − 1

9
e3t

Putting it all together,

e3ty(t) =
1

3
te3t − 1

9
e3t + et + C

so that

y(t) =
1

3
t− 1

9
+

1

e−2t
+

C

e3t

Notice that the last two terms go to zero as t →∞, so we see that y(t) does approach
a line:

1

3
t− 1

9
as t →∞.

2. Problem 3: Very similar situation to Problem 1. Let’s go ahead and solve:

y′ + y = te−t + 1

Multiply both sides by e
∫

p(t) dt = et:

et (y′ + y) = t + et ⇒
(
ety(t)

)′
= t + et

Integrate both sides:

ety(t) =
1

2
t2 + et + C ⇒ y(t) =

1

2
t2e−t + 1 + Ce−t

This could be written as:

y(t) = 1 +
t2

2et
+

C

et

so that it is clear that, as t →∞, y(t) → 1.



3. Problem 5:
y′ − 2y = 3et ⇒

(
e−2ty

)′
= e−t

Finishing, we get:
y(t) = −3et + Ce2t

(All solutions tend to ±∞)

4. Problem 7:
y′ + 2ty = 2tet2 ⇒

(
et2y

)′
= 2t

so that y(t) = (t2 + C)e−t2 , and all solutions tend to zero as t →∞.

5. Problem 13: (You’ll need to integrate by parts!)

y′ − y = 2te2t e
∫

p(t) dt = e−t

y(t) = e2t(2t− 2) + 3et

6. Problem 15:
ty′ + 2y = t2 − t + 1

Be sure to put in standard form before solving:

y′ +
2

t
y = t− 1 +

1

t
e
∫

p(t) dt = t2

and

y(t) =
1

4
t2 − 1

3
t +

1

2
+

1

12t2

7. Problem 16: In this problem, the integrating factor is again t2:

y′ +
2

t
· y =

cos(t)

t2
⇒ y(t) =

sin(t)

t2

8. Problem 30:
y′ − y = 1 + 3 sin(t) y(0) = y0

This is very similar to Problem 29. Note that:∫
e−t sin(t) dt = −1

2
e−t (cos(t) + sin(t))

Therefore, the general solution is (details left out):

y(t) = −1− 3

2
(cos(t) + sin(t)) +

(
5

2
+ y0

)
et

To keep the solution finite (or bounded) as t → ∞, we must find y0 so that the
exponential term drops out- This means that y0 = −5/2.



9. Problem 35: There are many ways of constructing such a differential equation- It’s
easiest to start with a desired solution. We’ll again show two possibilities:

• If we would like y(t) = 3− t + Ce−3t, then y′ = −1− 3Ce−3t, and:

y′ + 3y = 8− 3t

• If we would like y(t) = 3− t + C
t
, then y′ = −1− C/t2, and we see that:

ty′ + y = 3− 2t

10. Problem 36: Similar to 35, let’s try a solution then construct a DE. In this case, if
y = 2t− 5 + Ce−t, then y′ = 2− Ce−t, so that:

y′ + y = 2t− 3

2.2

1. Problem 1: Give the general solution: y′ = x2/y

y dy = x2 dx ⇒ 1

2
y2 =

1

3
x3 + C

2. Problem 3: Give the general solution to y′ + y2 sin(x) = 0.

First write in standard form:

dy

dx
= −y2 sin(x) ⇒ − 1

y2
dy = sin(x) dx

Before going any further, notice that we have divided by y, so we need to say that this
is value as long as y(x) 6= 0. In fact, we see that the function y(x) = 0 IS a possible
solution.

With that restriction in mind, we proceed by integrating both sides to get:

1

y
= − cos(x) + C ⇒ y =

1

C − cos(x)

3. Problem 5: This one is good for a little extra practice in integrating. Recall that:∫
cos2(x) dx =

1

2

∫
(1 + cos(2x)) dx =

1

2

(
x +

1

2
sin(2x)

)
Given that,

y′ = cos2(x) cos2(2y) ⇒ sec2(2y) dy = cos2(x) dx ⇒



1

2
tan(2y) =

1

2

(
x +

1

2
sin(2x)

)
+ C

It would be fine to leave it in this form. Of course, this solution is only valid when
cos(2y) 6= 0. The constant solutions

cos(2y) = 0

would also be solutions (we’ll focus on these types of solutions later). Solving for y,
we get the answer in the text.

4. Problem 7: Give the general solution:

dy

dx
=

x− e−x

y + ey

First, note that dy/dx exists as long as y 6= ey. With that requirement, we can proceed:

(y + ey) dy =
(
x + e−x

)
dx

Integrating, we get:
1

2
y2 + ey =

1

2
x2 − e−x + C

In this case, we cannot algebraically isolate y, so we’ll leave our answer in this form
(we could multiply by two).

5. Problem 9: Let y′ = (1− 2x)y2, y(0) = −1/6.

First, we find the solution. Before we divide by y, we should make the note that y 6= 0.
We also see that y(x) = 0 is a possible solution (although NOT a solution that satisfies
the initial condition).

Now solve: ∫
y−2 dy =

∫
(1− 2x) dx ⇒ −y−1 = x− x2 + C

Solve for the initial value:
6 = 0 + C ⇒ C = 6

The solution is (solve for y):

y(x) =
1

x2 − x− 6
=

1

(x− 3)(x + 2)

The solution is valid only on −2 < x < 3, and we could plot this by hand (also see the
Maple worksheet).



6. Problem 11: x dx + ye−xdy = 0, y(0) = 1

To solve, first get into a standard form, multiplying by ex, and integrate (integration
by parts for the right hand side):∫

y dy = −
∫

xex dx ⇒ 1

2
y2 = −xex + ex + C

We could solve for the constant before isolating y:

1

2
= 0 + 1 + C C = −1

2

Now solve for y:

y2 = 2ex(x− 1)− 1

2

and take the positive root, since y(0) = +1.

y =
√

2ex(1− x)− 1

The solution exists as long as:

2ex(1− x)− 1 ≥ 0

We would have to use Maple to solve where this is equal to zero- Given software, we
could see that −1.678 ≤ x ≤ 0.768.

7. Problem 16:
dy

dx
=

x(x2 + 1)

4y3
y(0) = − 1√

2

First, we notice that y 6= 0. Now separate the variables and integrate:

y4 =
1

4
x4 +

1

2
x2 + C

This might be a good time to solve for C: C = 1/4, so:

y4 =
1

4
x4 +

1

2
x2 +

1

4

The right side of the equation seems to be a nice form. Try some algebra to simplify
it:

1

4

(
x4 + 2x2 + 1

)
=

1

4
(x2 + 1)2

Now we can write the solution:

y4 =
1

4
(x2 + 1)2 ⇒ y = − 1√

2

√
x2 + 1

This solution exists for all x (it is the bottom half of a hyperbola- see the Maple plot).



8. Problem 20: y2
√

1− x2dy = sin1(x) dx with y(0) = 1.

To put into standard form, we’ll be dividing so that x 6= ±1. In that case,∫
y2 dy =

∫ sin−1(x)√
1− x2

dx

The right side of the equation is all set up for a u, du substitution, with u = sin−1(x),
du = 1/

√
x2 − 1 dx:

1

3
y3 =

1

2
(arcsin(x))2 + C

Solve for C, 1
3

= 0 + C so that:

1

3
y3 =

1

2
arcsin2(x) +

1

3

Now,

y(x) =
3

√
3

2
arcsin2(x) + 1

The domain of the inverse sine is: −1 ≤ x ≤ 1. However, we needed to exclude the
endpoints. Therefore, the domain is:

−1 < x < 1

Substitution Methods

See the PDF file that is linked online - It shows the direction fields so that you can see the
“zoom invariance” we were talking about in class.

• pg. 50, 31: y′ = (x2 + xy + y2)/x2 Divide it out:

y′ = 1 +
y

x
+

(
y

x

)2

Our substitution will be v = y/x, or y = xv so that y′ = v + xv′:

v + xv′ = 1 + v + v2 ⇒ xv′ = 1 + v2

This is now separable:

1

1 + v2
dv =

1

x
dx ⇒ tan−1(v) = ln |x|+ C ⇒

Remember to back-substitute. You can typically leave your answer in implicit form:

tan−1
(

y

x

)
= ln |x|+ C



• p. 50, 33: Divide numerator and denominator by x and substitute v = y/x, y = xv
and y′ = v + xv′ to translate the differential equation to:

v + xv′ =
4v − 3

2− v
⇒ xv′ =

4v − 3

2− v
− v(2− v)

2− v
=

v2 + 2v − 3

−(v − 2)

Separation of variables gives: ∫ −(v − 2)

v2 + 2v − 3
dv =

∫ 1

x
dx

To integrate the left side, we use partial fractions:

−v + 2

v2 + 2v − 3
=

A

v + 3
+

B

v − 1
=
−5

4

1

v + 3
+

1

4
· 1

v − 1

Now integrate through, and multiply by 4:

−5

4
ln |v + 3|+ 1

4
ln |v − 1| = ln |x|+ C

Back-substitute. We can simplify a bit:

ln

∣∣∣∣∣ v − 1

(v + 3)4

∣∣∣∣∣ = ln(x4) + C ⇒ v − 1

(v + 3)5
= Ax4 ⇒

∣∣∣∣yx − 1
∣∣∣∣ = Ax4

∣∣∣∣yx + 3
∣∣∣∣5

Multiply both sides by |x| to get the answer in the text,

|y − x| = A|y + 3x|5

Of course, this was only valid if v − 1 6= 0 and v + 3 6= 0. Notice that in these cases,
we do have solutions:

y = x y = −3x

(Try substituting them back in!)

• p. 50, 35: y′ = (x + 3y)/(x− y) Substitute as usual, then simplify:

v + xv′ =
1 + 3v

1− v
⇒ xv′ =

(v + 1)2

−v + 1

Separate variables, and integrate (You’ll need partial fractions, shown below):∫ −v + 1

(v + 1)2
dv = ln |x|+ C

where
−v + 1

(v + 1)2
=

A

v + 1
+

B

(v + 1)2
= − 1

v + 1
+

2

(v + 1)2



And this antiderivative is − ln |v + 1| − 2
v+1

. Put it together to get:

− ln |v + 1| − 2

v + 1
= ln |x|+ C

Back substitute for v and simplify:

ln

∣∣∣∣∣ x

y + x

∣∣∣∣∣− 2x

y + x
= ln |x|+ C ⇒ ln |y + x|+ 2x

y + x
= C2

(NOTE: We do want to simplify some; I’m showing how to get the form in the back
of the book)

• p. 77, 28: For the Bernoulli equations, we want to divide everything by the highest
power of y. In this case (We also divide by t2 to get standard form):

y′

y3
+

2

t

1

y2
=

1

t2

Now if v = 1/y2, then

dv

dx
= −2y−3 dy

dx
⇒ y′

y3
= −1

2
v′

Substitute back in:

−1

2
v′ +

2

t
v =

1

t2

Now put this into a standard linear form, then get the integrating factor:

v′ − 4

t
v = − 2

t2
⇒ e

∫
p(t) dt = t−4

Therefore, (
v

t4

)′
= − 2

t6
⇒ v =

2

5t5
+ Ct4

Back substitute and make the right side of the equation into a single fraction for later:

1

y2
=

2 + C2t
5

5t

which is where the answer in the text comes from.

• p. 77, 29: Similarly,

y′ = ry − ky2 ⇒ y′ − ry = −ky2 ⇒ y′

y2
− r

1

y
= −k



From which we get

v =
1

y
⇒ y′

y2
= −v′

so that
−v′ − rv = −k ⇒ v′ + rv = k ⇒ (vert)′ = kert

From which we get:

v =
k

r
+ Ce−rt

Back substitute v = 1/y to get the answer in the text.


