Selected Solutions: Reading HW, Chapter 1

2. A mathematical model is a DE that describes some physical process.
An equilibrium solution is a solution that never changes in time (a constant solution).

The trade off in modeling: (p. 15) Accuracy versus Simplicity.
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The three important questions about ODEs: Existence of a solution, Uniqueness of a
solution, Computability of a solution.

Selected Solutions: Chapter 1

e Section 1.1, 1-5 odd: For the general situation, ¥’ = ay + b, y(0) = yo, we know the

general solution from class:

b
y(t) = Pe™ — —

a
With y(0) = yo, we see that P = yo + 2. Therefore:

Ex1y =3—2y,s0a=—2andb=3. Since e¥ = e 2 and this term goes to zero

as t — oo, then y(t) will always tend to —b/a = 3/2. The only exception is the
equilibrium solution, y = 3/2 (If y(0) = 3/2, then y(t) = 3/2 for all ¢.

The behavior does depend on the initial value: If yo > 3/2, the function y(t)
decreases to 3/2 as t — oo. If yo < 3/2, the function increases to 3/2, and if
Yo = 3/2, we stay at 3/2.

— The other problems have similar solutions.

e Section 1.1, #7: Using what we have just learned in 1-5 odd, v = —y + 3 is one
possibility.

e Section 1.1, #15-20 Matching. An easy way to check is to look for the equilibrium
solutions- Where ' = 0. For example, ODE (d) would have equilibria at 0 = y(y + 3),
or y = 0 and y = 3. None of 15-20 have these on the direction field. On the other
hand, something like ODE (c) has y = 2 as the only equilibrium solution, and all other
solutions will tend away from it. Therefore, Exercise 16 is (c). Here are the others:

15(7) 16(c) 17(g) 18(b) 19(h) 20(e)

e Section 1.1, #22: Given

4
V= gﬂr?’ A = 4qr?

if V! = ¢ A, then we need to write V' in terms of A. Given the equations above,

1/3 2/3
r= (3> Py o A <3> Py gy
1
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Therefore, V' = ;A = ¢, V/3.

Section 1.2, 1(a,b): We'll go ahead and use the formula we got earlier:

b b
0 = (m+ 2] -
a a

Then the two solutions are:

y(t) = (yo —5)e™" +5 y@)_(ﬁo—2>ez“+g

Both DEs have a single equilbrium towards which all solutions tend. Solutions to the
second DE will tend towards its equilibrium much faster.

Section 1.2, #3: If a, b are both positive, we have seen that solutions to ' = —ay + b
will tend toward the equilibrium solution y = b/a.

Section 1.2, #15: We have seen that the solution is u(t) = (ug — T)e ™™ + T

In part(b), consider the following statements and their translations:

— The temperature difference at time 7: u(7) — T.
— The temperature difference at time 0: ug — T’
— Therefore,
u(r) =T = ;(uo -T)

where u(7) = (ug — T)e " + T (substitute in to get a relationship between k and
T.

Section 1.3, #7: Practice with hyperbolic sine and cosine (Definitions below):
p=e y=e¢ yi=e = y-yp=e¢-e=0
With o = cosh(t) = 3(e' +e7"), and y} = sinh(¢t) and y4 = cosh(t), we have:

Yy — y2 = cosh(t) — cosh(t) =0
Section 1.3, #14: Recall from the Fundamental Theorem of Calculus that

& [ ots)ds = gt)

Then use the product rule to differentiate the given y:

t

2 _ 2 2

y—‘et/e ds + e
0



y = (2tet2) /Ot g(s)ds + e’ (e*ﬁ) + 2te”’

Therefore, y' — 2ty simplifies:
t t
(2tet2) / g(s)ds + e (e_t2> + 2te” — 2t <et2/ e ds + et2> =’ =1
0 0

Section 1.3, #15-17: The basic idea here is that you want to be able to verify if a given
model equation is a solution. In these cases, the model equation is y = €. In other
exercises, it will be different.

Generally speaking, if we substitute

2 rt

y=e"y =re’ y =1
into ay” + by’ + cy = 0, we get:
ar*e™ +bre™ e =0 e et(ar’ +br4c)=0

Then either e = 0 (no solution), or ar? 4+ br + ¢ = 0, which we solve by factoring or
the quadratic formula. Specifically, for #15, we get:

r+2=0 = r=-2
And for #17, we get:

P+r—6=0 = (r+3)r-2)=0 = r=2-3

Section 1.3, #19 and 20: Similar to #15, 17 except that the model equation is y = t",
y =rt"tand y’ =r(r— 1)t

In #19, substituting into the DE we get
r(r—Dt"+4rt"+2t"=0 = t'(r(r—1)4+4r+2)=0
Then, like before, solve the resulting quadratic for r (¢ # 0, since ¢ > 0).
Section 1.3, #25:
1. Given u = cos(z) cosh(y) (subscript 1 removed for notation), then
u,; = —sin(z) cosh(y) Uzy = — cos(x) cosh(y)

and, using the relationship from earlier: (cosh(y))’ = sinh(y) and (sinh(y))" =
cosh(y),

u, = cos(z) sinh(y) Uyy = cos(x) cosh(y)

Therefore, g, + 1y, =0



2. Similarly, if up = In(z? + y?), then (for the second derivative, use quotient rule
and simplify):
2 =22 — )
x2 + 2 Uz = (x2 +y2)2
And, uy is “symmetric” in z,y, so the derivatives in y will look the same (just
exchange the z,y):

Uy =

2y —2(y° —2%) _ 2(2® —y?)
u, = Uu = =
Yat 42 @+ (24 ?)?

and we see that u,, + u,, = 0.



