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What is a Differential Equation?

Equations containing derivatives:

f'(t)y=2t+4 y'=—x/y
/ 2 ! __ 2
y =y—t y=t—y
Ve = W SR e =E (i = (0

What is a “solution” to a DE?

A Solution to a DE: A function that satisfies the equation.
Verify these solutions:

o y' =2t + 4 Solution: y = t> + 4t + C
o y' = —x/y Solution x> + y?> = C
(Note this was an implicit solution)
e y' =t> — y Solution y = et + t? + 2t 4 2

° y/ —t— y2
No “elementary” solution.
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o Why are DEs used?

@ In practice, it is much easier to measure the rate of change of a
quantity rather than the quantity itself-
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o Why are DEs used?
@ In practice, it is much easier to measure the rate of change of a
quantity rather than the quantity itself-
@ A DE that describes a physical process is often called a
mathematical model
We'll look at three models: Free fall, Owls and Mice, and Newton’s Law of

Cooling.
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Example: Free Fall

e Formulate a DE for an object falling (near sea level)
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Example: Free Fall
e Formulate a DE for an object falling (near sea level)
@ Variables: t, v (where v/ = a)
@ Newton's 2d law: F = ma = mV/
e Force of gravity: F = mg
@ Assume air resistance prop. to velocity: F = ~vyv
’ i

m/=mg—ywv = V=g-—-"v
m
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Example: Mice and Owls

@ Assume that the rate of change of mouse population is proportional
to the current population.
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Example: Mice and Owls

@ Assume that the rate of change of mouse population is proportional
to the current population.

dP
= _p
dr

@ Assume owls remove k mice per month. Then, with t measured in

months, P
— =rP -k
de "
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Example: Newton's Law of Cooling

Let u(t) be the temp of a body at time t. Then the rate of change of the
temperature is proportional to the difference between the temp of the
body and the environmental temperature:

Let T be the environmental temp.
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Example: Newton's Law of Cooling

Let u(t) be the temp of a body at time t. Then the rate of change of the
temperature is proportional to the difference between the temp of the
body and the environmental temperature:

Let T be the environmental temp.Then:

du
— = —k(u—T
™ (u—=T)

where k, T are positive (or zero).
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Conclusion:
@ We notice that all three models are of the same underlying type:
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where a, b are constants (unrestricted- could be negative or zero).
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Conclusion:
@ We notice that all three models are of the same underlying type:
dy

& b
g YT

where a, b are constants (unrestricted- could be negative or zero).

@ All 3 models are of the same type, but represent very different physical
phenomena- This is the power of using mathematical modeling.
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This semester, we will develop techniques to solve a differential equation.
In this case, we show one quickly just to give you a sense for how it works:
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This semester, we will develop techniques to solve a differential equation.
In this case, we show one quickly just to give you a sense for how it works:
dy

- = b =
dt v+ y+b/a

dy = adt
In|ly +b/a|=at+c = y-+bla= Pe?

t) = P —
y(t) = Pe™ -~

Special solution (Verify): y(t) = —g
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This semester, we will develop techniques to solve a differential equation.
In this case, we show one quickly just to give you a sense for how it works:
dy

- = b =
dar ay +

dy = adt
y+b/a y=a

Inly +b/a|=at+c = y-+b/a= Pe®

b
t) = Pe?t — =
y(t) ;
Special solution (Verify): y(t) = —g
Definition: An equilibrium solution is a solution that does not change in
time. Example: y = —b/a
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Continuing, suppose we had:

y=y+2 y(0)=2

Solve the DE using the previous technique.
SOLUTION: a=1,b =2, so we have

1
= Pet — =
y ¢ 75
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Continuing, suppose we had:
y=y+2 y(0)=2

Solve the DE using the previous technique.
SOLUTION: a=1,b =2, so we have

1
= Pet — =
y ¢ 75

We use the initial condition y(0) = 2 to solve for P:

2=P -2 = y(t)=4e' -2
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Continuing, suppose we had:
y=y+2 y(0)=2

Solve the DE using the previous technique.
SOLUTION: a=1,b =2, so we have

1
= Pet — =

We use the initial condition y(0) = 2 to solve for P:

2=P -2 = y(t)=4e' -2

An Initial Value Problem (IVP) is a DE with an initial condition (IC).
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Definitions:
@ Ordinary vs Partial Differential Equations (ODE vs. PDE)
Examples:
'+ u +u=3t Uk + Uy =0

@ Order of the DE: The order of the highest derivative.
General first order ODE: y’ = f(t,y)

January 18, 2012
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More Definitions
@ Linear ODE: Any ODE that can be written in the form:

ao(t)y ™ (2) + ar(t)y ") + - + ana (1) (8) + an(t)y(2) = G(1)

Otherwise, the ODE is nonlinear.
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More Definitions
@ Linear ODE: Any ODE that can be written in the form:

ao(t)y™(t) + a1 (t)y "I (t) + -+ + an_1(t)y/(t) + an(t)y(t) = G(t)
Otherwise, the ODE is nonlinear.Recall the examples:
y=t2—y y=t—y

The first example is linear (and we gave a solution), the second is
nonlinear (and we cannot find an elementary solution).
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@ This is the question of existence: Does every ODE y’ = f(t, y) have a
solution y = ¢(t)?



@ This is the question of existence: Does every ODE y’ = f(t, y) have a
solution y = ¢(t)? (No).

@ A second question is one of uniqueness: If the ODE has a solution,
does it have more than one?
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@ This is the question of existence: Does every ODE y’ = f(t, y) have a
solution y = ¢(t)? (No).

@ A second question is one of uniqueness: If the ODE has a solution,
does it have more than one?

@ Third is a practical question: If the ODE has a solution, can we
compute it?

We'll answer these questions this semester....
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Consider this:
NOTE

The study of “nonlinear ODEs" is like the study of “non-elephant animals”
in the sense that often, the real world is nonlinear. Often, analytic
solutions will not be possible.
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Visualizing Solutions
A differential equation is like a “road map":

y'=f(t,y)

That is, at each point (t, y), we can compute the slope of the line tangent
to the solution curve y(t).
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Visualizing Solutions
A differential equation is like a “road map":

y'=f(t,y)

That is, at each point (t, y), we can compute the slope of the line tangent
to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good
approximation to y.

Definition: A direction field is a plot in the (¢, y) plane that give the local
tangent lines to the solution to a first order ODE.

v

Example: y' =t — y?
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|
Visualizing Solutions

A differential equation is like a “road map":

y'=f(t,y)

That is, at each point (t, y), we can compute the slope of the line tangent
to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good
approximation to y.

Definition: A direction field is a plot in the (¢, y) plane that give the local
tangent lines to the solution to a first order ODE.

Example: y' =t — y?
In drawing a picture, we might consider curves of constant slope. For
example, with zero slope:
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Graphically determine the solutions (integral curves) to y’ = t — y? for the
following initial conditions:

y0 =1 y(-1)=0 y(1)=1

January 18,2012 16 / 21



22 7 s

\\\\\\\\\\
27T
B ey
e Sy
e ]
e gy
S > PP

P S L

uz&//// 4 S
R
N

T 7 i e
\ f A
F A
EW\\\\\\ML

Aol PR
P e
CAT 7 e s an
iR A B R BB e
|7 e

AT

17/21

January 18, 2012



B
Exercise 1:
10 kg and v = 2 kg/s (and m = 9.8 m/s?)

Give the solution and the direction field for the falling body, if the mass is




Exercise 1:
Give the solution and the direction field for the falling body, if the mass is
10 kg and v = 2 kg/s (and m = 9.8 m/s?)

SOLUTION: )

mvV =mg—yv = v’:9.8—§v
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Exercise 1:
Give the solution and the direction field for the falling body, if the mass is
10 kg and v = 2 kg/s (and m = 9.8 m/s?)

SOLUTION:
mvV =mg—yv = v’:9.8—§v
The equilibrium solution is the solution to 0 = 9.8 — v/5

v =49
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Exercise 1:
Give the solution and the direction field for the falling body, if the mass is
10 kg and v = 2 kg/s (and m = 9.8 m/s?)

SOLUTION:
m/=mg—yv = VvV =908--v

5
The equilibrium solution is the solution to 0 = 9.8 — v/5
v =49
The other solutions are (a = —1/5, b = 9.8)
v(t) = Pe~t/5 4 49

(Draw the direction field and show the solutions)

January 18, 2012 18 / 21



Exercise 2:

Suppose y’ + y' — 6y = t3.
@ Is this an ordinary or partial DE?
@ What is the order of this DE?

@ Is this DE linear or nonlinear?
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If y = e, find k for which y solves the DE:

y'+y' —6y=0
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Suppose y’ + y' — 6y = t3.
@ Is this an ordinary or partial DE?
@ What is the order of this DE?

@ Is this DE linear or nonlinear?

If y = e, find k for which y solves the DE:
y'+y' —6y=0

SOLUTION: Substitute y = ek, y/ = kekt and y” = k2ekt
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Exercise 2:

Suppose y’ + y' — 6y = t3.
@ Is this an ordinary or partial DE?
@ What is the order of this DE?

@ Is this DE linear or nonlinear?
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Exercise 2:

Suppose y’ + y' — 6y = t3.
@ Is this an ordinary or partial DE?
@ What is the order of this DE?

@ Is this DE linear or nonlinear?

If y = ekt, find k for which y solves the DE:
y'+y —6y=0
SOLUTION: Substitute y = et, y/ = kekt and y” = ket so that

K2kt 4 kekt — ekt =0 =  eM(k*+k—-6)=0
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Exercise 2:

Suppose y’ + y' — 6y = t3.
@ Is this an ordinary or partial DE?
@ What is the order of this DE?

@ Is this DE linear or nonlinear?

If y = e, find k for which y solves the DE:
y'+y —6y=0
SOLUTION: Substitute y = et, y/ = kekt and y” = ket so that
k2ekt 4 kekt —Beft =0 = M (K2 +k—6)=0

sothat k =2 or k = -3
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Homework Hint: #14, Section 1.3

Differentiate the following with respect to t:

0 /0 " G(s) ds

SOLUTION: t
f’(t)/o G(s)ds + f(£)G(t)

Homework Note: # 25, 1.3

If you know cosh(x), go ahead. If not, use only up instead of u; and w».

v
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Recall the following techniques:

o Partial Fractions

@ Integration by parts



