
What is a Differential Equation?

Equations containing derivatives:

f ′(t) = 2t + 4 y ′ = −x/y
y ′ = y − t2 y ′ = t − y2

uxt = ux + cos(t) uxx + uyy = 0

What is a “solution” to a DE?

A Solution to a DE: A function that satisfies the equation.
Verify these solutions:

y ′ = 2t + 4 Solution: y = t2 + 4t + C

y ′ = −x/y Solution x2 + y2 = C
(Note this was an implicit solution)

y ′ = t2 − y Solution y = et + t2 + 2t + 2

y ′ = t − y2

No “elementary” solution.
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Why are DEs used?

In practice, it is much easier to measure the rate of change of a
quantity rather than the quantity itself-

A DE that describes a physical process is often called a
mathematical model

We’ll look at three models: Free fall, Owls and Mice, and Newton’s Law of
Cooling.
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Example: Free Fall

Formulate a DE for an object falling (near sea level)

Variables: t, v (where v ′ = a)

Newton’s 2d law: F = ma = mv ′

Force of gravity: F = mg

Assume air resistance prop. to velocity: F = γv

mv ′ = mg − γv ⇒ v ′ = g − γ

m
v
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Example: Mice and Owls

Assume that the rate of change of mouse population is proportional
to the current population.

dP

dt
= rP

Assume owls remove k mice per month. Then, with t measured in
months,

dP

dt
= rP − k
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Example: Newton’s Law of Cooling

Let u(t) be the temp of a body at time t. Then the rate of change of the
temperature is proportional to the difference between the temp of the
body and the environmental temperature:

Let T be the environmental temp.

Then:

du

dt
= −k(u − T )

where k,T are positive (or zero).
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Conclusion:

We notice that all three models are of the same underlying type:

dy

dt
= ay + b

where a, b are constants (unrestricted- could be negative or zero).

All 3 models are of the same type, but represent very different physical
phenomena- This is the power of using mathematical modeling.
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This semester, we will develop techniques to solve a differential equation.
In this case, we show one quickly just to give you a sense for how it works:

dy

dt
= ay + b ⇒ 1

y + b/a
dy = a dt

ln |y + b/a| = at + c ⇒ y + b/a = Peat

y(t) = Peat − b

a

Special solution (Verify): y(t) = −b
a

Definition: An equilibrium solution is a solution that does not change in
time. Example: y = −b/a
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Continuing, suppose we had:

y ′ = y + 2 y(0) = 2

Solve the DE using the previous technique.

SOLUTION: a = 1, b = 2, so we have

y = Pet − 1

2

We use the initial condition y(0) = 2 to solve for P:

2 = Pe0 − 2 ⇒ y(t) = 4et − 2

An Initial Value Problem (IVP) is a DE with an initial condition (IC).
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Definitions:

Ordinary vs Partial Differential Equations (ODE vs. PDE)
Examples:

u′′ + u′ + u = 3t uxx + uyy = 0

Order of the DE: The order of the highest derivative.
General first order ODE: y ′ = f (t, y)

() January 18, 2012 9 / 21



More Definitions

Linear ODE: Any ODE that can be written in the form:

a0(t)y (n)(t) + a1(t)y (n−1)(t) + · · ·+ an−1(t)y ′(t) + an(t)y(t) = G (t)

Otherwise, the ODE is nonlinear.

Recall the examples:

y ′ = t2 − y y ′ = t − y2

The first example is linear (and we gave a solution), the second is
nonlinear (and we cannot find an elementary solution).
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This is the question of existence: Does every ODE y ′ = f (t, y) have a
solution y = φ(t)?

(No).

A second question is one of uniqueness: If the ODE has a solution,
does it have more than one?

Third is a practical question: If the ODE has a solution, can we
compute it?

We’ll answer these questions this semester....
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Consider this:

NOTE

The study of “nonlinear ODEs” is like the study of “non-elephant animals”
in the sense that often, the real world is nonlinear. Often, analytic
solutions will not be possible.
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Visualizing Solutions

A differential equation is like a “road map”:

y ′ = f (t, y)

That is, at each point (t, y), we can compute the slope of the line tangent
to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good
approximation to y .

Definition: A direction field is a plot in the (t, y) plane that give the local
tangent lines to the solution to a first order ODE.

Example: y ′ = t − y2

In drawing a picture, we might consider curves of constant slope. For
example, with zero slope:

0 = t − y2 ⇒ y2 = t
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tangent lines to the solution to a first order ODE.

Example: y ′ = t − y2

In drawing a picture, we might consider curves of constant slope. For
example, with zero slope:

0 = t − y2 ⇒ y2 = t
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Figure: Direction Field with Isoclines: y ′ = −2, y ′ = 0, y ′ = 1
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Graphically determine the solutions (integral curves) to y ′ = t − y2 for the
following initial conditions:

y(0) = 1 y(−1) = 0 y(1) = 1
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Exercise 1:

Give the solution and the direction field for the falling body, if the mass is
10 kg and γ = 2 kg/s (and m = 9.8 m/s2)

SOLUTION:

mv ′ = mg − γv ⇒ v ′ = 9.8− 1

5
v

The equilibrium solution is the solution to 0 = 9.8− v/5

v = 49

The other solutions are (a = −1/5, b = 9.8)

v(t) = Pe−t/5 + 49

(Draw the direction field and show the solutions)
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Exercise 2:

Suppose y ′′ + y ′ − 6y = t3.

Is this an ordinary or partial DE?

What is the order of this DE?

Is this DE linear or nonlinear?

If y = ekt , find k for which y solves the DE:

y ′′ + y ′ − 6y = 0

SOLUTION: Substitute y = ekt , y ′ = kekt and y ′′ = k2ekt so that

k2ekt + kekt − 6ekt = 0 ⇒ ekt(k2 + k − 6) = 0

so that k = 2 or k = −3
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Homework Hint: #14, Section 1.3

Differentiate the following with respect to t:

f (t)

∫ t

0
G (s) ds

SOLUTION:

f ′(t)

∫ t

0
G (s) ds + f (t)G (t)

Homework Note: # 25, 1.3

If you know cosh(x), go ahead. If not, use only u2 instead of u1 and u2.
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Recall the following techniques:

Partial Fractions

Integration by parts
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