
Summary of Chapter 3

We can think of the chapter as being split into two: General theory, and Computation. First, the general
theory.

General Theory, Chapter 3

The goal of the theory was to establish the structure of solutions to the second order DE:

y′′ + p(t)y′ + q(t)y = g(t)

We saw that two functions form a fundamental set of solutions to the homogeneous DE if the Wronskian is
not zero (at the initial value of time).
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2. Theorems:

• The Existence and Uniqueness Theorem for y′′+p(t)y′+q(t)y = g(t): If there is an open interval I
on which p, q and g exists, and if I contains the initial time t0, then there exists a unique solution
to the IVP, valid on I.

• Principle of Superposition: If L is a linear operator, and y1, y2 are two functions so that L(y1) = 0
and L(y2) = 0, then so does any function of the form c1y1 + c2y2.

• Abel’s Theorem.

If y1, y2 are solutions to y′′+ p(t)y′+ q(t)y = 0, then the Wronskian is either always zero or never
zero on the interval for which the solutions are valid.

That is because the Wronskian may be computed as:

W (y1, y2)(t) = Ce−
∫
p(t) dt

• The Fundamental Set of Solutions: y′′ + p(t)y′ + q(t)y = 0

We can guarantee that we can always find a fundamental set of solutions. We did that by appealing
to the Existence and Uniqueness Theorem for the following two initial value problems:

– y1 solves y′′ + p(t)y′ + q(t)y = 0 with y(t0) = 1, y′(t0) = 0

– y2 solves y′′ + p(t)y′ + q(t)y = 0 with y(t0) = 0, y′(t0) = 1

3. The Structure of Solutions to y′′ + p(t)y′ + q(y)y = g(t), y(t0) = y0, y
′(t0) = v0

Given that yh solves the homogeneous equation, and yp solves the forced equation, then the general
solution to the forced equation is

yh + yp

Or, we can be much more specific:

Given a fundamental set of solutions to the homogeneous equation, y1, y2, then there is a solution to
the initial value problem, written as:

y(t) = C1y1(t) + C2y2(t) + yp(t)

where yp(t) solves the non-homogeneous equation.

In fact, if we have:
y′′ + p(t)y′ + q(t)y = g1(t) + g2(t) + . . .+ gn(t)

we can solve by splitting the problem up into smaller problems:



• y1, y2 form a fundamental set of solutions to the homogeneous equation.

• yp1 solves y′′ + p(t)y′ + q(t)y = g1(t)

• yp2 solves y′′ + p(t)y′ + q(t)y = g2(t)

and so on..

• ypn solves y′′ + p(t)y′ + q(t)y = gn(t)

and the full solution is:
y(t) = C1y1 + C2y2 + yp1 + yp2 + . . .+ ypn

Computation of Solutions, Chapter 3

From the theory, we know that every initial value problem:

ay′′ + by′ + cy = g(t) y(t0) = y0 y′(t0) = v0

has a solution that can be expressed as:

y(t) = c1y1 + c2y2 + yp

where y1, y2 form a fundamental set of solutions to the homogeneous equation, and yp(t) is the (particular)
solution to the nonhomogeneous equation.
We first consider the homogeneous ODE:

Solving ay′′ + by′ + cy = 0

Form the associated characteristic equation (built by using y = ert as the ansatz):

ar2 + br + c = 0 ⇒ r =
−b±

√
b2 − 4ac

2a

so that the solutions depend on the discriminant, b2 − 4ac in the following way (yh refers to the solution of
the homogeneous equation):

• b2 − 4ac > 0⇒ 2 distinct real roots r1, r2. yh(t) = c1er1t + c2er2t

• b2 − 4ac = 0⇒ one real root r = −b/2a: yh(t) = e−(b/2a)t (C1 + C2t)

• b2 − 4ac < 0⇒ 2 complex solutions, r = λ± iµ: yh(t) = eλt (C1 cos(µt) + C2 sin(µt))

Solving y′′ + p(t)y′ + q(t)y = 0

Given y1(t), we can solve for a second linearly independent solution to the homogeneous equation, y2, by
one of two methods:

• By use of the Wronskian: There are two ways to compute this,

– W (y1, y2) = Ce−
∫
p(t) dt (This is from Abel’s Theorem)

– W (y1, y2) = y1y
′
2 − y2y′1

Therefore, these are equal, and y2 is the unknown: y1y
′
2 − y2y′1 = Ce−

∫
p(t) dt

• Reduction of order, where y2 = v(t)y1(t).



Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

• Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay′′+ by′+ cy,
acting on certain classes of functions, returns the same class. In summary, the table from the text:

if gi(t) is: The ansatz ypi is:
Pn(t) ts(a0 + a1t+ . . . ant

n)
Pn(t)eαt tseαt(a0 + a1t+ . . .+ ant

n)
Pn(t)eαt sin(µt) or cos(µt) tseαt ((a0 + a1t+ . . .+ ant

n) sin(µt)
+ (b0 + b1t+ . . .+ bnt

n) cos(µt))

The ts term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or
t2 so that no term of the ansatz is included as a term of the homogeneous solution.

• Variation of Parameters: Given y′′ + p(t)y′ + q(t)y = g(t), with y1, y2 solutions to the homogeneous
equation, we write the ansatz for the particular solution as:

yp = u1y1 + u2y2

From our analysis, we saw that u1, u2 were required to solve:

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = g(t)

From which we get the formulas for u′1 and u′2:

u′1 =
−y2g

W (y1, y2)
u′2 =

y1g

W (y1, y2)


