
Notes (Ch 9): Poincare Classification

To solve x = Ax, we compute the eigenvalues then the eigenvectors, and
build the solution. We can also summarize the geometric behavior of the
solutions by looking at a plot- However, there is an easier way to classify the
origin (as an equilibrium),

To find the eigenvalues, we compute the characteristic equation:

λ2 − Tr(A)λ+ det(A) = 0 λ =
Tr(A)±

√
∆

2

which depends on the discriminant ∆:

• ∆ > 0: Real λ1, λ2.

• ∆ < 0: Complex λ = a+ ib

• ∆ = 0: One eigenvalue.

The type of solution depends on ∆, and in particular, where ∆ = 0:

∆ = 0 ⇒ 0 = (Tr(A))2 − 4det(A)

This is a parabola in the (Tr(A), det(A)) coordinate system.

Example:

Given the system where x′ = Ax for each matrix A below, classify the origin
using the Poincaré Diagram:

1.

[
1 −4
4 −7

]
SOLUTION: Compute the trace, determinant and discriminant:

Tr(A) = −6 Det(A) = 9 ∆ = 36− 4 · 9 = 0

Therefore, we have a “degenerate sink”. That is, we have a sink, and
we have a degenerate matrix.

2.

[
1 2
−5 −1

]
SOLUTION: Compute the trace, determinant and discriminant:

Tr(A) = 0 Det(A) = 9 ∆ = 02 − 4 · 9 = −36

We have a saddle (in fact, λ = ±3).
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Example:

Given the system x′ = Ax where the matrix A depends on α, describe how
the equilibrium solution changes depending on α (use the Poincaré Diagram):

1.

[
2 −5
α −2

]
SOLUTION: The trace is 0, so that puts us on the “det(A)” axis. The
determinant is −4 + 5α. If this is positive, we have a center:

−4 + 5α > 0 ⇒ α >
4

5

If this is negative, we have a saddle:

α <
4

5

If α = 4
5
, we have “uniform motion”. That is, x1(t) and x2(t) will be

linear in t (see if you can find the general solution!).

2.

[
α 1
−1 α

]
SOLUTION: The trace is 2α and the determinant is α2 +1. The discrim-

inant is:
4α2 − 4(α2 + 1) = 4α2 − 4α2 − 4 = −4

Therefore, we always have a center (periodic solutions).

Linearizing a Nonlinear System

The following notes are elements from Sections 9.2 and 9.3.

• Suppose we have an autonomous system of equations:

x′ = f(x, y)
y′ = g(x, y)

Then (as before) we define a point (a, b) to be an equilibrium point
for the system if f(a, b) = 0 AND g(a, b) = 0 (that is, you must solve
the system of equations, not one at a time).

• Example: Find the equilibria to:

x′ = −(x− y)(1− x− y)
y′ = x(2 + y)

SOLUTION: From the second equation, either x = 0 or y = −2. Take
each case separately.
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– If x = 0, then the first equation becomes y(1 − y), so y = 0 or
y = 1. So far, we have two equilibria:

(0, 0) (0, 1)

– Next, if y = −2 in the second equation, then the first equation
becomes

−(x+ 2)(1− x+ 2) = 0 ⇒ x = −2 or x = 3

We now have two more equilibria:

(−2,−2) (3,−2)

• Key Idea: The “interesting” behavior of a dynamical system is orga-
nized around its equilibrium solutions.

• To see what this means, here is the graph of the direction field for the
example nonlinear system:

• In order to understand this picture, we will need to linearize the differ-
ential equation about its equilibrium.

• Let x = a, y = b be an equilibrium solution to x′ = f(x, y) and y′ =
g(x, y). Then the linearization about (a, b) is the system:[

u′

v′

]
=

[
fx(a, b) fy(a, b)
gx(a, b) gy(a, b)

] [
u
v

]
where u = x − a and y = v − b. In our analysis, we really only care
about this matrix- You may have used it before, it is called the Jacobian
matrix.
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• Continuing with our previous example, we compute the Jacobian ma-
trix, then we will insert the equilibria one at a time and perform our
local analysis. We then try to put together a global picture of what’s
happening.

Recall that the system is:

x′ = −(x− y)(1− x− y) = −x+ x2 + y − y2
y′ = x(2 + y) = 2x+ xy

The Jacobian matrix for our example is:[
fx fy
gx gy

]
=

[
−1 + 2x 1− 2y

2 + y x

]

Equilibrium System Tr(A) det(A) ∆ Poincare

(0, 0)

[
−1 1

2 0

]
−1 −2 Saddle

(0, 1)

[
−1 −1

3 0

]
−1 3 −11

Spiral
Sink

(−2,−2)

[
−5 5

0 −2

]
−7 10 9 Sink

(3,−2)

[
5 5
0 3

]
8 15 4 Source

Here’s the picture again:
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System Tr(A) det(A) ∆ Poincare λ V
Fill in[

1 2
−5 −1

]
0 9 −36 3i

[
2

−1 + 3i

]
[

1 −1
1 3

]
4 4 0 2, 2

[
−1 0

1 1

]
[
−1

2
1

−1 −1
2

]
−1 5/4 −4 −1

2
+ i

[
1
i

]
[
−1 −1

0 −1
4

]
−5/4 1/4 9/16 −1,−1/4

[
1 −4
0 3

]

Figure 1: Phase planes. From top to bottom, Center, Degenerate Source,
Spiral Sink, Sink.
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Homework: Elements of Chapter 9, Day 1

1. Fill in the following and under “Poincaré” classify the origin. Then,
given the eigenvalues/eigenvectors, also write down the general solution
to x′ = Ax. In the case that there is only one eigenvector, the second
column of V shows the generalized eigenvector w.

System Tr(A) det(A) ∆ Poincare λ V
Fill in[

3 −2
4 −1

]
1 + 2i

[
1

1− i

]
[

2 −1
3 −2

]
−1, 1

[
1 1
3 1

]
[

0 2
−2 0

]
2i

[
−i
1

]
[

4 −2
8 −4

]
0, 0

[
1 0
2 −1/2

]
2. Explain how the classification of the origin changes by changing the α

in the system:

(a) x′ =

[
0 α
1 −2

]
x

(b) x′ =

[
2 α
1 −1

]
x

(c) x′ =

[
α 10
−1 −4

]
x

Hint: Use a number line to keep track of where the trace, deter-
minant and discriminant change sign (reminiscent of sign charts
in Calc I). This is Exercise 19, pg. 410 if you want to see the text-
book solution- It is easier to organize the different possibilities
using the Poincaré Diagram, however.

3. For the following nonlinear systems, find the equilibrium solutions (the
derivatives are with respect to t, as usual).

(a) x′ = x− xy, y′ = y + 2xy

(b) x′ = y(2− x− y), y′ = −x− y − 2xy
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