Solutions to Review Questions: Exam 3

1. What is the ansatz we use for y in

- Chapter 6? SOLUTION: $y(t)$ is piecewise continuous and is of exponential order (so that $Y(s)$ exists).
- Section 5.2-5.3? SOLUTION: $y(x)$ is analytic at $x=x_{0}$. That is,

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

- Section 5.4 (for $x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0$)? SOLUTION: $y=x^{r}$ (and it is good to recall that the substitution $t=\ln (x)$ connects this problem to $\ddot{y}+(\alpha-1) \dot{y}+\beta y=0$, which we solved in Chapter 3).

2. Finish the definitions:

- The Heaviside function, $u_{c}(t)$:

$$
u_{c}(t)=\left\{\begin{array}{ll}
0 & \text { if } t<c \\
1 & \text { if } t \geq c
\end{array} \quad c>0\right.
$$

- The Dirac δ-function: $\delta(t-c)$

$$
\delta(t-c)=\lim _{\tau \rightarrow 0} d_{\tau}(t-c)
$$

where

$$
d_{\tau}(t-c)=\left\{\begin{aligned}
\frac{1}{2 \tau} & \text { if } c-\tau<t<c+\tau \\
0 & \text { elsewhere }
\end{aligned}\right.
$$

- Define the convolution: $(f * g)(t)$

$$
(f * g)(t)=\int_{0}^{t} f(t-u) g(u) d u
$$

- A function is of exponential order if:
there are constants M, k, and a so that

$$
|f(t)| \leq M \mathrm{e}^{k t} \quad \text { for all } \quad t \geq a
$$

3. Use the definition of the Laplace transform to determine $\mathcal{L}(f)$:
(a)

$$
\begin{aligned}
f(t) & = \begin{cases}3, & 0 \leq t<2 \\
6-t, & t \geq 2\end{cases} \\
\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t & =\int_{0}^{2} 3 \mathrm{e}^{-s t} d t+\int_{2}^{\infty}(6-t) \mathrm{e}^{-s t} d t
\end{aligned}
$$

The second antiderivative is found by integration by parts:

$$
\left.\int_{2}^{\infty}(6-t) \mathrm{e}^{-s t} d t \Rightarrow \begin{array}{lcc}
+ & 6-t & \mathrm{e}^{-s t} \\
- & -1 & (-1 / s) \mathrm{e}^{-s t} \\
+ & 0 & \left(1 / s^{2}\right) \mathrm{e}^{-s t}
\end{array} \Rightarrow \quad \mathrm{e}^{-s t}\left(-\frac{6-t}{s}+\frac{1}{s^{2}}\right)\right|_{2} ^{\infty}
$$

Putting it all together,

$$
-\left.\frac{3}{s} \mathrm{e}^{-s t}\right|_{0} ^{2}+\left(0-\mathrm{e}^{-2 s}\left(-\frac{4}{s}+\frac{1}{s^{2}}\right)\right)=-\frac{3 \mathrm{e}^{-2 s}}{s}+\frac{3}{s}+\frac{4 \mathrm{e}^{-2 s}}{s}-\frac{\mathrm{e}^{-2 s}}{s^{2}}=\frac{3}{s}+\mathrm{e}^{-2 s}\left(\frac{1}{s}-\frac{1}{s^{2}}\right)
$$

NOTE: Did you remember to antidifferentiate in the third column?
(b)

$$
\begin{gathered}
f(t)=\left\{\begin{array}{cc}
\mathrm{e}^{-t}, & 0 \leq t<5 \\
-1, & t \geq 5
\end{array}\right. \\
\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) d t=\int_{0}^{5} \mathrm{e}^{-s t} \mathrm{e}^{-t} d t+\int_{5}^{\infty}-\mathrm{e}^{-s t} d t=\int_{0}^{5} \mathrm{e}^{-(s+1) t} d t+\int_{5}^{\infty}-\mathrm{e}^{-s t} d t
\end{gathered}
$$

Taking the antiderivatives,

$$
-\left.\frac{1}{s+1} \mathrm{e}^{-(s+1) t}\right|_{0} ^{5}+\left.\frac{1}{s} \mathrm{e}^{-s t}\right|_{5} ^{\infty}=\frac{1}{s+1}-\frac{\mathrm{e}^{-5(s+1)}}{s+1}+0-\frac{\mathrm{e}^{-5 s}}{s}
$$

4. Check your answers to Problem 2 by rewriting $f(t)$ using the step (or Heaviside) function, and use the table to compute the corresponding Laplace transform.
(a) $f(t)=3\left(u_{0}(t)-u_{2}(t)\right)+(6-t) u_{2}(t)=3-3 u_{2}(t)+(6-t) u_{2}(t)=3+(3-t) u_{2}(t)$ For the second term, notice that the table entry is for $u_{c}(t) h(t-c)$. Therefore, if

$$
h(t-2)=3-t \quad \text { then } \quad h(t)=3-(t+2)=1-t \quad \text { and } \quad H(s)=\frac{1}{s}-\frac{1}{s^{2}}
$$

Therefore, the overall transform is:

$$
\frac{3}{s}+\mathrm{e}^{-2 s}\left(\frac{1}{s}-\frac{1}{s^{2}}\right)
$$

(b) $f(t)=\mathrm{e}^{-t}\left(u_{0}(t)-u_{5}(t)\right)-u_{5}(t)$

We can rewrite f in preparation for the transform:

$$
f(t)=\mathrm{e}^{-t} u_{0}(t)-\mathrm{e}^{-t} u_{5}(t)-u_{5}(t)
$$

For the middle term,

$$
h(t-5)=\mathrm{e}^{-t} \quad \Rightarrow \quad h(t)=\mathrm{e}^{-(t+5)}=\mathrm{e}^{-5} \mathrm{e}^{-t}
$$

so the overall transform is:

$$
F(s)=\frac{1}{s+1}-\mathrm{e}^{-5} \frac{\mathrm{e}^{-5 s}}{s+1}-\frac{\mathrm{e}^{-5 s}}{s}
$$

5. Write the following functions in piecewise form (thus removing the Heaviside function):
(a) $(t+2) u_{2}(t)+\sin (t) u_{3}(t)-(t+2) u_{4}(t)$

SOLUTION: First, notice that $(t+2)$ is turned "on" at time 2. At time $t=3$, $\sin (t)$ joins the first function, and at time $t=4$, we subtract the function $t+2$ back off.

$$
\left\{\begin{aligned}
0 & \text { if } 0 \leq t<2 \\
t+2 & \text { if } 2 \leq t<3 \\
t+2+\sin (t) & \text { if } 3 \leq t<4 \\
\sin (t) & \text { if } t \geq 4
\end{aligned}\right.
$$

(b) $\sum_{n=1}^{4} u_{n \pi}(t) \sin (t-n \pi)$

SOLUTION: First (you can determine this graphically) $\sin (t-\pi)=-\sin (t)$, and $\sin (t-2 \pi)=\sin (t)$, and $\sin (t-3 \pi)=-\sin (t)$, etc.- You should simplify these. Therefore:

$$
\begin{aligned}
& \begin{cases}0 & \text { if } 0 \leq t<\pi \\
\sin (t-\pi) & \text { if } \pi \leq t<2 \pi \\
\sin (t-\pi)+\sin (t-2 \pi) & \text { if } 2 \pi<t<3 \pi \\
\sin (t-\pi)+\sin (t-2 \pi)+\sin (t-3 \pi) & \text { if } 3 \pi \leq t<4 \pi \\
\sin (t-\pi)+\sin (t-2 \pi)+\sin (t-3 \pi)+\sin (t-4 \pi) & \text { if } t \geq 4 \pi\end{cases} \\
& \left\{\begin{array}{rll}
0 & \text { if } 0 \leq t<\pi & \\
-\sin (t) & \text { if } \pi \leq t<2 \pi \\
0 & \text { if } 2 \pi<t<3 \pi \\
-\sin (t) & \text { if } 3 \pi \leq t<4 \pi \\
0 & \text { if } t \geq 4 \pi
\end{array}\right.
\end{aligned}
$$

6. Determine the Laplace transform:
(a) $t^{2} \mathrm{e}^{-9 t}$

$$
\frac{2}{(s+9)^{3}}
$$

(b) $\mathrm{e}^{2 t}-t^{3}-\sin (5 t)$

$$
\frac{1}{s-2}-\frac{6}{s^{4}}-\frac{5}{s^{2}+25}
$$

(c) $t^{2} y^{\prime}(t)$. Use Table Entry $16, \mathcal{L}\left(-t^{n} f(t)\right)=F^{(n)}(s)$. In this case, $F(s)=s Y(s)-$ $y(0)$, so $F^{\prime}(s)=s Y^{\prime}(s)+Y(s)$ and $F^{\prime \prime}(s)=s Y^{\prime \prime}(s)+2 Y^{\prime}(s)$.
(d) $\mathrm{e}^{3 t} \sin (4 t)$

$$
\frac{4}{(s-3)^{2}+16}
$$

(e) $\mathrm{e}^{t} \delta(t-3)$

In this case, notice that $f(t) \delta(t-c)$ is the same as $f(c) \delta(t-c)$, since the delta function is zero everywhere except at $t=c$. Therefore,

$$
\mathcal{L}\left(\mathrm{e}^{t} \delta(t-c)\right)=\mathrm{e}^{3} \mathrm{e}^{-3 s}
$$

(f) $t^{2} u_{4}(t)$

In this case, let $h(t-4)=t^{2}$, so that

$$
h(t)=(t+4)^{2}=t^{2}+8 t+16 \quad \Rightarrow \quad H(s)=\frac{2+8 s+16 s^{2}}{s^{3}}
$$

and the overall transform is $\mathrm{e}^{-4 s} H(s)$.
7. Find the inverse Laplace transform:
(a) $\frac{2 s-1}{s^{2}-4 s+6}$

$$
\frac{2 s-1}{s^{2}-4 s+6}=\frac{2 s-1}{\left(s^{2}-4 s+4\right)+2}=2 \frac{s-1 / 2}{(s-2)^{2}+2}=
$$

In the numerator, make $s-\frac{1}{2}$ into $s-2+\frac{3}{2}$, then

$$
2\left(\frac{s-2}{(s-2)^{2}+2}+\frac{3}{2 \sqrt{2}} \frac{\sqrt{2}}{(s-2)^{2}+2}\right) \Rightarrow 2 \mathrm{e}^{2 t} \cos (\sqrt{2} t)+\frac{3}{\sqrt{2}} \mathrm{e}^{2 t} \sin (\sqrt{2} t)
$$

(b) $\frac{7}{(s+3)^{3}}=\frac{7}{2!} \frac{2!}{(s+3)^{3}} \Rightarrow \frac{7}{2} t^{2} \mathrm{e}^{-3 t}$
(c) $\frac{\mathrm{e}^{-2 s}(4 s+2)}{(s-1)(s+2)}=\mathrm{e}^{-2 s} H(s)$, where

$$
H(s)=\frac{4 s+2}{(s-1)(s+2)}=\frac{2}{s-1}+\frac{2}{s+2} \quad \Rightarrow \quad h(t)=2 \mathrm{e}^{t}+2 \mathrm{e}^{-2 t}
$$

and the overall inverse: $u_{2}(t) h(t-2)$.
(d) $\frac{3 s-1}{2 s^{2}-8 s+14}$ Complete the square in the denominator, factoring the constants

$$
\frac{3 s-1}{2\left(s^{2}-8 s+5\right)}=\frac{3}{2} \cdot \frac{s-1 / 3}{(s-2)^{2}+3}=\frac{3}{2}\left(\frac{s-2}{(s-2)^{2}+3}+\frac{5}{3} \cdot \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{(s-2)^{2}+3}\right)
$$

The inverse transform is:

$$
\frac{3}{2} \mathrm{e}^{2 t} \cos (\sqrt{3} t)+\frac{5}{2 \sqrt{3}} \mathrm{e}^{2 t} \sin (\sqrt{3} t)
$$

(e) $\left(\mathrm{e}^{-2 s}-\mathrm{e}^{-3 s}\right) \frac{1}{s^{2}+s-6}=\left(\mathrm{e}^{-2 s}-\mathrm{e}^{-3 s}\right) H(s)$

Where:

$$
H(s)=\frac{1}{s^{2}+s-6}=\frac{1}{5} \frac{1}{s-2}-\frac{1}{5} \frac{1}{s+3}
$$

so that

$$
h(t)=\frac{1}{5} \mathrm{e}^{2 t}-\frac{1}{5} \mathrm{e}^{-3 t}
$$

and the overall transform is:

$$
u_{2}(t) h(t-2)-u_{3}(t) h(t-3)
$$

8. For the following differential equations, solve for $Y(s)$ (the Laplace transform of the solution, $y(t)$). Do not invert the transform.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=t^{2}+4 t, y(0)=0, \quad y^{\prime}(0)=-1$

$$
s^{2} Y+1+2 s Y+2 Y=\frac{2}{s^{3}}+\frac{4}{s^{2}}
$$

so that

$$
Y(s)=\frac{2}{s^{3}\left(s^{2}+2 s+2\right)}+\frac{4}{s^{2}\left(s^{2}+2 s+2\right)}-\frac{1}{s^{2}+2 s+2}
$$

(b) $y^{\prime \prime}+9 y=10 \mathrm{e}^{2 t}, y(0)=-1, \quad y^{\prime}(0)=5$

$$
s^{2} Y+s-5+9 Y=\frac{10}{s-2} \Rightarrow Y(s)=\frac{10}{(s-2)\left(s^{2}+9\right)}-\frac{s-5}{s^{2}+9}
$$

(c) $y^{\prime \prime}-4 y^{\prime}+4 y=t^{2} \mathrm{e}^{t}, y(0)=0, \quad y^{\prime}(0)=0$

$$
\left(s^{2}-4 s+4\right) Y=\frac{2}{(s-1)^{3}} \Rightarrow Y(s)=\frac{2}{(s-1)^{3}(s-2)^{2}}
$$

9. Solve the given initial value problems using Laplace transforms:
(a) $2 y^{\prime \prime}+y^{\prime}+2 y=\delta(t-5)$, zero initial conditions.

$$
Y=\frac{\mathrm{e}^{-5 s}}{2 s^{2}+s+2}=\mathrm{e}^{-5 s} H(s)
$$

where

$$
H(s)=\frac{1}{2 s^{2}+s+2}=\frac{1}{2} \frac{1}{s^{2}+\frac{1}{2} s+1}=\frac{1}{2} \frac{1}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}}=\frac{1}{2} \frac{4}{\sqrt{15}} \frac{\frac{\sqrt{15}}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}}
$$

Therefore,

$$
h(t)=\frac{2}{\sqrt{15}} \mathrm{e}^{-1 / 4 t} \sin \left(\frac{\sqrt{15}}{4} t\right)
$$

And the overall solution is $u_{5}(t) h(t-5)$
(b) $y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=-3, \quad y^{\prime}(0)=10$

$$
s^{2} Y+3 s-10+6(s Y+3)+9 Y=0 \quad \Rightarrow \quad Y=-\frac{3 s+8}{(s+3)^{2}}
$$

Partial Fractions:

$$
-\frac{3 s+8}{(s+3)^{2}}=-\frac{3}{(s+3)}+\frac{1}{(s+3)^{2}} \Rightarrow y(t)=-3 \mathrm{e}^{-3 t}+t \mathrm{e}^{-3 t}
$$

(c) $y^{\prime \prime}-2 y^{\prime}-3 y=u_{1}(t), y(0)=0, \quad y^{\prime}(0)=-1$

$$
Y=\mathrm{e}^{-s} \frac{1}{s(s-3)(s+1)}+\frac{1}{(s+1)(s-3)}=\mathrm{e}^{-s} H(s)+\frac{1}{4} \frac{1}{s-3}-\frac{1}{4} \frac{1}{s+1}
$$

where

$$
H(s)=\frac{1}{s(s-3)(s+1)}=-\frac{1}{3} \frac{1}{s}+\frac{1}{12} \frac{1}{s-3}+\frac{1}{4} \frac{1}{s+1}
$$

so that

$$
h(t)=-\frac{1}{3}+\frac{1}{12} \mathrm{e}^{3 t}+\frac{1}{4} \mathrm{e}^{-t}
$$

and the overall solution is:

$$
y(t)=\frac{1}{4} \mathrm{e}^{3 t}-\frac{1}{4} \mathrm{e}^{-t}+u_{1}(t) h(t-1)
$$

(d) $y^{\prime \prime}+4 y=\delta\left(t-\frac{\pi}{2}\right), y(0)=0, \quad y^{\prime}(0)=1$

$$
Y=\mathrm{e}^{-\pi / 2 s} \frac{1}{s^{2}+4}+\frac{1}{s^{2}+4}
$$

Therefore,

$$
y(t)=\frac{1}{2} \sin (2 t)+u_{\pi / 2}(t) \frac{1}{2} \sin (2(t-\pi / 2))
$$

(e) $y^{\prime \prime}+y=\sum_{k=1}^{\infty} \delta(t-2 k \pi), y(0)=y^{\prime}(0)=0$. Write your answer in piecewise form.

$$
Y(s)=\sum_{k=1}^{\infty} \mathrm{e}^{-2 k \pi s} \frac{1}{s^{2}+1}
$$

Therefore, term-by-term,

$$
y(t)=\sum_{k=1}^{\infty} u_{2 k \pi}(t) \sin (t-2 \pi k)=\sum_{k=1}^{\infty} u_{2 \pi k}(t) \sin (t)
$$

Piecewise,

$$
y(t)=\left\{\begin{array}{rcc}
0 & \text { if } & 0 \leq t<2 \pi \\
\sin (t) & \text { if } & 2 \pi \leq t<4 \pi \\
2 \sin (t) & \text { if } & 4 \pi \leq t<6 \pi \\
3 \sin (t) & \text { if } & 6 \pi \leq t<8 \pi \\
\vdots & \vdots &
\end{array}\right.
$$

10. For the following, use Laplace transforms to solve, and leave your answer in the form of a convolution:
(a) $4 y^{\prime \prime}+4 y^{\prime}+17 y=g(t) \quad y(0)=0, y^{\prime}(0)=0$

SOLUTION: First, note that

$$
4 s^{2}+4 s+17=4\left(s^{2}+s+17 / 4\right)=4\left((s+1 / 2)^{2}+4\right)
$$

Therefore,

$$
Y(s)=\frac{G(s)}{4 s^{2}+4 s+17}=G(s) \cdot \frac{1}{8} \frac{2}{\left(s+\frac{1}{2}\right)^{2}+2^{2}}
$$

Therefore,

$$
y(t)=g(t) * \frac{1}{8} \mathrm{e}^{-t / 2} \sin (2 t)
$$

(b) $y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=1-u_{\pi}(t)$, with $y(0)=1$ and $y^{\prime}(0)=-1$.

SOLUTION: Take the Laplace transform of both sides:

$$
\left(s^{2} Y-s+1\right)+(s Y-1)_{\frac{5}{4}} Y=\frac{1}{s}-\frac{\mathrm{e}^{-\pi s}}{s}
$$

so that

$$
Y(s)=\frac{1-\mathrm{e}^{-\pi s}}{s\left(s^{2}+s+5 / 4\right)}+\frac{s}{s^{2}+s+5 / 4}
$$

For the second term,

$$
\frac{s}{s^{2}+s+5 / 4}=\frac{s}{\left(s+\frac{1}{2}\right)^{2}+1}=\frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+1}-\frac{1}{2} \frac{1}{\left(s+\frac{1}{2}\right)^{2}+1}
$$

For the first term, treat it like:

$$
\left(\mathrm{e}^{-0 s}-\mathrm{e}^{-\pi s}\right) H(s)
$$

where

$$
H(s)=\frac{1}{s} \cdot \frac{1}{s^{2}+s+\frac{5}{4}}=\frac{1}{s} \cdot \frac{1}{\left(s+\frac{1}{2}\right)^{2}+1}
$$

so that

$$
h(t)=1 * \mathrm{e}^{-t / 2} \sin (t)
$$

Therefore, the overall answer is:

$$
y(t)=h(t)-u_{\pi}(t) h(t-\pi)+\mathrm{e}^{-t / 2}\left(\cos (t)-\frac{1}{2} \sin (t)\right)
$$

11. Short Answer:
(a) $\int_{0}^{\infty} \sin (3 t) \delta\left(t-\frac{\pi}{2}\right) d t=\sin (3 \pi / 2)=-1$, since

$$
\int_{0}^{\infty} f(t) \delta(t-c) d t=f(c)
$$

(b) Use Laplace transforms to solve the first order DE, thus finding which function has the Dirac function as its derivative:

$$
y^{\prime}(t)=\delta(t-c), \quad y(0)=0
$$

SOLUTION:

$$
s Y=\mathrm{e}^{-c s} \Rightarrow Y=\frac{\mathrm{e}^{-c s}}{s}
$$

so that $y(t)=u_{c}(t)$. Therefore, the "derivative" of the Heaviside function is the Dirac δ-function!
(c) What is the expected radius of convergence for the series expansion of $f(x)=$ $1 /\left(x^{2}+2 x+5\right)$ if the series is based at $x_{0}=1$?
SOLUTION (From 5.4):
The roots of the denominator are where $x^{2}+2 x+5=0$. Use the quadratic formula or complete the square to find the roots,

$$
(x+1)^{2}=-4 \Rightarrow x=-1 \pm 2 i
$$

Find the distance (in the complex plane) between $x=1$ and either root (the distances will be the same). In this case,

$$
\sqrt{(1--1)^{2}+(0-2)^{2}}=\sqrt{8}
$$

Therefore, the radius of convergence is $2 \sqrt{2}$.
(d) Use Laplace transforms to solve for $F(s)$, if

$$
f(t)+2 \int_{0}^{t} \cos (t-x) f(x) d x=\mathrm{e}^{-t}
$$

(So only solve for the transform of $f(t)$, don't invert it back).

$$
F(s)+2 F(s) \frac{s}{s^{2}+1}=\frac{1}{s+1} \Rightarrow F(s)\left(\frac{(s+1)^{2}}{s^{2}+1}\right)=\frac{1}{s+1}
$$

so that

$$
F(s)=\frac{s^{2}+1}{(s+1)^{3}}
$$

(e) In order for the Laplace transform of f to exist, f must be?
f must be piecewise continuous and of exponential order
(f) Can we assume that the solution to: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=u_{3}(x)$ is a power series? SOLUTION: No. Notice that the second derivative is not continuous at $x=3$, but the second derivative of the power series would be.
(g) Use the table to find the Laplace transform of $\mathrm{e}^{-2 t} \sinh (\sqrt{3} t)$.

SOLUTION: Use Table Entries 14 and 7:

$$
\mathcal{L}\left(\mathrm{e}^{-2 t} \sinh (\sqrt{3} t)\right)=F(s+2)
$$

where $F(s)$ is the Laplace transform of $\sinh (\sqrt{3} t)$:

$$
F(s)=\frac{\sqrt{3}}{s^{2}-9} \Rightarrow \text { Overall Answer: } \quad F(s+2)=\frac{\sqrt{3}}{(s+2)^{2}-9}
$$

(h) Is $x=0$ an ordinary point of $x y^{\prime \prime}+3 x^{2} y^{\prime}+y=4$?

SOLUTION: No. Dividing by x gives $p(x)=3 x$, but $q(x)=1 / x$, so we cannot have $x=0$ as an ordinary point (so $x=0$ is a singular point).
12. Let $f(t)=t$ and $g(t)=u_{2}(t)$.
(a) Use the Laplace transform to compute $f * g$.

To use the table,

$$
\mathcal{L}\left(t * u_{2}(t)\right)=\frac{1}{s^{2}} \cdot \frac{\mathrm{e}^{-2 s}}{s}=\mathrm{e}^{-2 s} \frac{1}{s^{3}}=\mathrm{e}^{-2 s} H(s)
$$

so that $h(t)=\frac{1}{2} t^{2}$. The inverse transform is then

$$
u_{2}(t) \frac{1}{2}(t-2)^{2}
$$

(b) Verify your answer by directly computing the integral.

By direct computation, we'll choose to "flip and shift" the function t :

$$
f * g=\int_{0}^{t}(t-x) u_{2}(x) d x
$$

Notice that $u_{2}(x)$ is zero until $x=2$, then $u_{2}(x)=1$. Therefore, if $t \leq 2$, the integral is zero. If $t \geq 2$, then:

$$
\int_{0}^{t}(t-x) u_{2}(x) d x=\int_{2}^{t} t-x d x=t x-\left.\frac{1}{2} x^{2}\right|_{2} ^{t}=t^{2}-\frac{1}{2} t^{2}-2 t+2=\frac{1}{2}(t-2)^{2}
$$

valid for $t \geq 2$, zero before that. This means that the convolution is:

$$
t * u_{2}(t)=\frac{1}{2}(t-2)^{2} u_{2}(t)
$$

13. If $a_{0}=1$, determine the coefficients a_{n} so that

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Try to identify the series represented by $\sum_{n=0}^{\infty} a_{n} x^{n}$.
SOLUTION: The recognition problem is a little difficult, but we should be able to get the coefficients:

$$
a_{k+2}=-\frac{2}{k+1} a_{k}
$$

Just doing the straight computations, we get:

$$
y(x)=1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2}{3} x^{4}-\cdots
$$

To see the pattern, it is easiest to look at the general terms (Typically, I wouldn't ask for the recognition part on the exam, but you should be able to get the first few computations, as we did above):

$$
\begin{array}{rll}
a_{1} & =-2 a_{0} & =\frac{(-2)}{1!} a_{0} \\
a_{2} & =-\frac{2}{2} a_{0}=2 a_{0} & =\frac{4}{2!a_{0}} \\
a_{3}-\frac{2}{3} a_{2}=-\frac{4}{3} a_{0} & =\frac{8}{3!} a_{0}
\end{array}
$$

The series is for $\mathrm{e}^{-2 x}=\sum_{n=0}^{\infty} \frac{(-2)^{n} x^{n}}{n!}$
14. Write the following as a single sum in the form $\sum_{k=2}^{\infty} c_{k}(x-1)^{k}$ (with a few terms in the front):

$$
\sum_{n=1}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+x(x-2) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}
$$

In front of the second sum we have $x^{2}-2 x$, but we can't bring that directly into the sum since we have powers of $(x-1)$. But, we might recognize that:

$$
x^{2}-2 x=\left(x^{2}-2 x+1\right)-1=(x-1)^{2}-1
$$

Therefore, the second sum can be expanded into two sums:

$$
\begin{gathered}
\left((x-1)^{2}-1\right) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}=(x-1)^{2} \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}= \\
\sum_{n=1}^{\infty} n a_{n}(x-1)^{n+1}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}
\end{gathered}
$$

Now we have three sums to work with

$$
\sum_{n=1}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+\sum_{n=1}^{\infty} n a_{n}(x-1)^{n+1}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}
$$

In the first sum, the first non-zero term has $(x-1)^{0}$, the second sum begins with $(x-1)^{2}$, and the last sum starts with $(x-1)^{0}$. We could shift the second index to start at $n=0$, but then the sum begins with $(x-1)^{1}$. We'll have to break off the constant terms from the first two sums:

$$
\sum_{n=1}^{\infty} n(n-1) a_{n}(x-1)^{n-2}=2 a_{2}+\sum_{n=3}^{\infty} n(n-1)(x-1)^{n-2}
$$

and similarly

$$
-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}=-a_{1}-\sum_{n=2}^{\infty} n a_{n}(x-1)^{n-1}
$$

Now we can bring all three sums together. In the first sum, we'll substitute $k=n-2$ (or $n=k+2$). In the middle sum, $k=n+1$ (or $n=k-1$), and in the third sum, $k=n-1$ (or $n=k+1$). With these substitutions, we get:

$$
2 a_{2}-a_{0}+\sum_{k=1}^{\infty}\left((k+2)(k+1) a_{k+2}+(k-1) a_{k-1}-(k+1) a_{k+1}\right)(x-1)^{k}
$$

NOTE: The question asked for the index to start at $k=2$ instead of $k=1$ - It's OK to do it either way; mainly, I wanted to see you put the sums together as one.
15. Characterize ALL (continuous or not) solutions to

$$
y^{\prime \prime}+4 y=u_{1}(t), \quad y(0)=1, y^{\prime}(0)=1
$$

SOLUTION: The idea behind this question is to get you to think about the kinds of solutions we get from the Laplace transform. If we do not require y to be continuous, then this DE is actually two differential equations:

$$
y^{\prime \prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=1 \quad \text { valid for } t \leq 1
$$

And

$$
y^{\prime \prime}+4 y=1 \quad y(1), y^{\prime}(1) \text { arbitrary }, \text { valid for } t>1
$$

The general solution is then:

$$
y(t)=\left\{\begin{aligned}
\cos (2 t)+\frac{1}{2} \sin (2 t) & \text { if } t \leq 1 \\
c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{1}{4} & \text { if } t>1
\end{aligned}\right.
$$

If we require $y(t)$ to be continuous (a very common assumption), then we get the answer that comes from using Laplace transforms. Writing the answer in piecewise form:

$$
y(t)=\left\{\begin{aligned}
\cos (2 t)+\frac{1}{2} \sin (2 t) & \text { if } t \leq 1 \\
-\frac{1}{4} \cos (2(t-1))+\frac{1}{4} & \text { if } t>1
\end{aligned}\right.
$$

16. Use the table to find an expression for $\mathcal{L}\left(t y^{\prime}\right)$. Use this to convert the following DE into a linear first order DE in $Y(s)$ (do not solve):

$$
y^{\prime \prime}+3 t y^{\prime}-6 y=1, y(0)=0, y^{\prime}(0)=0
$$

SOLUTION: For the first part, use Table Entry 19. In particular,

$$
\mathcal{L}(t f(t))=-F^{\prime}(s)
$$

where, in our case, $f(t)=y^{\prime}(t)$, so that $F(s)=s Y-y(0)$. Therefore,

$$
\mathcal{L}(t f(t))=-\left(Y-s Y^{\prime}\right)=s Y^{\prime}-Y
$$

Substituting this into the DE, we get:

$$
Y^{\prime}+\left(\frac{s^{2}-3 s-6}{3 s}\right) Y=\frac{1}{s}
$$

17. Exercises with the table:
(a) Use table entries 5 and 14 to prove the formula for 9.

SOLUTION: Prove formula \#9 using 5 and 14:

$$
\mathcal{L}\left(\mathrm{e}^{a t} \sin (b t)\right)=F(s-a)
$$

where

$$
F(s)=\mathcal{L}(\sin (b t))=\frac{b}{s^{2}+b^{2}} \Rightarrow \frac{b}{(s-a)^{2}+b^{2}}
$$

Therefore,

$$
\mathcal{L}\left(\mathrm{e}^{a t} \sin (b t)\right)=\frac{b}{(s-a)^{2}+b^{2}}
$$

(b) Show that you can use table entry 19 to find the Laplace transform of $t^{2} \delta(t-3)$ (verify your answer using a property of the δ function).
SOLUTION: Using Entry 19, the Laplace transform of $t^{2} \delta(t-3)$ is the second derivative of the Laplace transform of $\delta(t-3)$. That is, using

$$
F(s)=\mathrm{e}^{-3 s}
$$

then

$$
\mathcal{L}\left(t^{2} \delta(t-3)\right)=F^{\prime \prime}(s)=9 \mathrm{e}^{-3 s}
$$

And this is the same as:

$$
\int_{0}^{\infty} \mathrm{e}^{-s t} t^{2} \delta(t-3) d t=9 \mathrm{e}^{-3 s}
$$

(c) Prove (using the definition of \mathcal{L}) table entries 12 and 13.

SOLUTION: 12 is a special case of 13 , so we prove 13 using the definition:

$$
\mathcal{L}\left(u_{c}(t) f(t-c)\right)=\int_{0}^{\infty} \mathrm{e}^{-s t} u_{c}(t) f(t-c) d t=\int_{c}^{\infty} \mathrm{e}^{-s t} f(t-c) d t
$$

We want this answer to be the following (with a different variable of integration):

$$
\mathrm{e}^{-c s} F(s)=\mathrm{e}^{-c s} \int_{0}^{\infty} \mathrm{e}^{-s w} f(w) d w=\int_{0}^{\infty} \mathrm{e}^{-s(w+c)} f(w) d w
$$

We can connect the two by taking $w=t-c$ (so that $t=w+c$), and then (remember to change the bounds!):

$$
\int_{c}^{\infty} \mathrm{e}^{-s t} f(t-c) d t=\int_{0}^{\infty} \mathrm{e}^{-s(w+c)} f(w) d w
$$

And we're done.
(d) Prove (using the definition of \mathcal{L}) a formula (similar to 18) for $\mathcal{L}\left(y^{\prime \prime \prime}(t)\right)$.

SOLUTION: I wanted you to recall how we got those definitions in the past (integrating by parts):

$$
\mathcal{L}\left(y^{\prime \prime \prime}(t)\right)=\int_{0}^{\infty} \mathrm{e}^{-s t} y^{\prime \prime \prime}(t) d t
$$

Integration by parts using a table:

$$
\begin{aligned}
& + \\
& + \\
& - \\
& - \\
& + \\
& + \\
& + \\
& -\mathrm{e}^{-s t} \\
& - \\
& - \\
& - \\
& \mathrm{e}^{-s t} \\
& \mathrm{e}^{-s t} \mathrm{e}^{-s t}
\end{aligned} y^{\prime \prime \prime}\left(\begin{array} { r }
{ y ^ { \prime \prime } (t) } \\
{ y ^ { \prime } (t) } \\
{ y (t) }
\end{array} \quad \Rightarrow \quad \left(\left.\mathrm{e}^{-s t}\left(y^{\prime \prime}(t)+s y^{\prime}(t)+s^{2} y(t)\right)\right|_{t=0} ^{\infty}+s^{3} \int_{0}^{\infty} \mathrm{e}^{-s t} y(t) d t\right.\right.
$$

At infinity, these terms all go to zero (otherwise, the Laplace transform wouldn't exist), so we get:

$$
s^{3}-\left(y^{\prime \prime}(0)+s y^{\prime}(0)+s^{2} y(0)\right)=s^{3} Y-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)
$$

18. Find the recurrence relation between the coefficients for the power series solutions to the following:
(a) $2 y^{\prime \prime}+x y^{\prime}+3 y=0, x_{0}=0$.

Substituting our power series in for $y, y^{\prime}, y^{\prime \prime}$:

$$
2 \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+3 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

We want to write this as a single sum, with each index starting at the same value. First we'll simplify a bit:

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} 3 a_{n} x^{n}=0
$$

Noting that in the second sum we could start at $n=0$, since the first term (constant term) would be zero anyway, we can start all series with a constant term:

$$
\sum_{k=0}^{\infty}\left(2(k+2)(k+1) a_{k+2}+k a_{k}+3 a_{k}\right) x^{k}=0
$$

From which we get the recurrence relation:

$$
a_{k+2}=-\frac{k+3}{2(k+2)(k+1)} a_{k}
$$

(b) $(1-x) y^{\prime \prime}+x y^{\prime}-y=0, x_{0}=0$

Substituting our power series in for $y, y^{\prime}, y^{\prime \prime}$:

$$
(1-x) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

We want to write this as a single sum, with each index starting at the same value. First we'll simplify a bit:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}+\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

The two middle sums can have their respective index taken down by one (so that formally the series would start with $0 x^{0}$):

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n(n-1) a_{n} x^{n-1}+\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Now make all the indices the same. To do this, in the first sum make $k=n-2$, in the second sum take $k=n-1$. Doing this and collecting terms:

$$
\sum_{k=0}^{\infty}\left((k+2)(k+1) a_{k+2}-(k+1) k a_{k+1}+(k-1) a_{k}\right) x^{k}=0
$$

So we get the recursion:

$$
a_{k+2}=\frac{(k+1) k a_{k+1}-(k-1) a_{k}}{(k+2)(k+1)}
$$

(c) $y^{\prime \prime}-x y^{\prime}-y=0, x_{0}=1$

Done in class;

$$
a_{n+2}=\frac{1}{n+2}\left(a_{n+1}+a_{n}\right)
$$

19. Find the first 5 terms of the power series solution to $\mathrm{e}^{x} y^{\prime \prime}+x y=0$ if $y(0)=1$ and $y^{\prime}(0)=-1$.

Compute the derivatives directly, then (don't forget to divide by $n!$):

$$
y(x)=1-x-\frac{1}{3!} x^{3}+\frac{1}{3!} x^{4}+\ldots
$$

20. Determine a lower bound for the radius of convergence of series solutions about each given point x_{0} for the given differential equation:

$$
\left(x^{2}-2 x+5\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad x_{0}=0, \quad x_{0}=3
$$

SOLUTION: This was from 5.3. We see that the polynomial $x^{2}-2 x+5$ will be in the denominator, and it is zero where:

$$
x^{2}-2 x+1+4=0 \quad \Rightarrow \quad(x-1)^{2}=-4 \quad \Rightarrow \quad x=1 \pm 2 i
$$

The radius is therefore the smaller of the distances between x_{0} and the two roots (which will be the same):
If $x_{0}=0$, the distance is between $(0,0)$ and $(1,2): \sqrt{1^{2}+2^{2}}=\sqrt{5}$
If $x_{0}=3$, the distance is between $(3,0)$ and $(1,2): \sqrt{2^{2}+2^{2}}=2 \sqrt{2}$
21. Find the radius of convergence for the following series:
(a) $\sum_{n=1}^{\infty} \sqrt{n} x^{n}$

SOLUTION:

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{n}}|x|=|x|
$$

So by the ratio test, the series will converge (absolutely) if $|x|<1$ (so the radius is 1).
(b) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n+1}}(x+3)^{n}$

SOLUTION: Simplifying the limit in the ratio test, we get

$$
\lim _{n \rightarrow \infty} 2 \sqrt{\frac{n}{n+1}}|x+3|=2|x+3|
$$

Therefore, by the ratio test, the series will converge absolutely if $2|x+3|<1$, or if $|x+3|<1 / 2$ (and this is our radius). For the interval of convergence, we have to check the points $x=-7 / 2$ and $x=-5 / 2$ separately. For $x=-7 / 2$, the series diverges (p-test), and for $x=-5 / 2$, the series converges by the alternating series test.
NOTE: If you don't recall those tests, you probably ought to review them, but I won't make you recall them for the exam this week.
(c) $\sum_{n=1}^{\infty} \frac{n!x^{n}}{n^{n}}$ (A little tricky)

SOLUTION: This one is a little tricky because we need to recall the definition of e:

$$
\mathrm{e}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

In this case, using the Ratio Test, we have:
$\lim _{n \rightarrow \infty} \frac{(n+1)!}{n!} \cdot \frac{n^{n}}{(n+1)^{n+1}}|x|=\lim _{n \rightarrow \infty} \frac{(n+1) n^{n}}{(n+1)(n+1)^{n}}|x|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}|x|=\frac{|x|}{e}$
so the radius of convergence is e.
(d) $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 5^{n}}$

SOLUTION: This is definitely similar to problems on exams/quizzes. The Ratio Test simplifies to:

$$
\frac{1}{5} \lim _{n \rightarrow \infty} \frac{n}{n+1}|3 x-2|=\frac{|3 x-2|}{5}
$$

To converge absolutely, $|3 x-2|<5$, so the radius of convergence is 5 . Now we have to check the endpoints separately, which are $x=-1$ and $x=7 / 3$:

- At $x=-1$, the sum becomes:

$$
\sum_{n=1}^{\infty} \frac{(-5)^{n}}{n 5^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

This is an alternating harmonic series, which converges (but not absolutely).

- At $x=7 / 3$, the sum becomes a harmonic series, which diverges.

The interval of convergence is: $\left[-1, \frac{7}{3}\right)$
22. For the exercises from 5.4, see the solution set online.

