
Solutions: Section 2.4

1. Problems 1-6 ask you to apply the Existence and Uniqueness Theorem to a given linear
ODE. Be sure to put the DE in standard form first! Some notes as you do this:

• The interval is a single (connected) interval.

• For theoretical reasons, our interval should be open (so it is possible to differentiate
the function at each point in the domain).

• The actual interval may be larger than the one guaranteed by the theorem (but
we are looking for the one guaranteed by the theorem).

For example, in Exercise 5:

(4− t2)y′ + 2ty = 3t2 y(1) = −3 ⇒ y′ +
2t

(2− t)(2 + t)
y =

3t2

4− t2

The functions p, q are continuous on (−∞,−2)
⋃

(−2, 2)
⋃

(2,∞). We want the interval
containing t = 1, which is the middle interval.

2. Exercises 7-12 ask you to apply the general existence and uniqueness theorem. Some-
times it can be difficult to tell where a functions in the plane are continuous (especially
if we had to use the definition), but we are looking for common constraints, like where
the denominator is zero, or making sure the log or square root are defined.

• Problem 7:

f(t, y) =
t− y

2t+ 5y
fy =

−7t

(2t+ 5y)2)

Therefore, f and fy are both continuous for all (t, y) except those points along
the line 2t+ 5y = 0, or y = −2t/5

• Problem 9:

f(t, y) =
ln |ty|

1− t2 + y2
fy =

(1/y)(1− t2 + y2)− ln |ty|(2y)

(1− t2 + y2)2

Therefore, the derivative did not add any new restrictions- f is continuous on the
(t, y) plane except on the axes t = 0 and y = 0, and the curve 1− t2 + y2 = 0.

3. In problems 13-16, we solve the differential equation to determine the full interval on
which solutions exist (and how they depend on the initial condition). We show in
detail the solution to Exercise 14:

Given y′ = 2ty2, y(0) = y0, we see it is separable:∫
y−2 dy =

∫
2t dt ⇒ −1

y
= t2 + C



With the initial condition, C = −1/y0, so:

y(t) =
1

(1/y0)− t2
=

y0
1− y0t2

This is valid as long as y0 6= 0. What if it is? Then we see that y(t) = 0 is the unique
solution.

If y0 6= 0, then we continue by looking at where

1− y0t2 = 0 ⇒ t = ± 1
√
y0

This is valid only if y0 > 0. If y0 < 0, then the denominator, 1− y0t2 is never zero (for
any t). Thus, if y0 < 0, the solution that we previously obtained is valid for all t.

The last case is where y0 > 0. Since the initial time is t0 = 0, then the solution y(t) is
only valid for:

− 1
√
y0
< t <

1
√
y0

Summary: In this homework problem, we saw that the time interval on which the
solution is valid depended greatly on the initial value of y,

• If y0 < 0, y(t) is valid for all time.

• If y0 = 0, y(t) = 0 is the solution, valid for all time.

• If y0 > 0, y(t) is valid for a short segment of time, between ±1/
√
y0.

4. Exercises 21-22 have solutions in the back of the text.

5. Exercises 23-25: If you have had linear algebra, you might see that there is an underly-
ing point to these- Linearity. If you have not, don’t worry about it yet. However, some
students are not sure about what constitutes an answer, so they are provided below:

• Problem 23:

(a) Show that e2t and ce2t (c any constant) are both solutions to the ODE: y′ −
2y = 0.
You can show this directly (by substitution), or by actually solving the DE.
You should see that the general solution is y(t) = Ae2t

(b) Show that 1
t

is a solution to y′ + y2 = 0, but C
t

is not.
You can again show this directly (by substitution), or by actually solving the
DE. If you solve it, you should get:

y(t) =
1

t− C

(or y(t) = 0).



• Problem 24: To show this, first note that, if y(t) = φ(t) is a solution to y′+p(t)y =
0, then:

φ′ + p(t)φ = 0

Now substitute y(t) = cφ: y′ = cφ′, and:

cφ′ + p(t)cφ = c (φ′ + p(t)φ) = c · 0 = 0

• Problem 25: Same idea as 24. Substitute the expression in to see what you get.

Assume that y1 solves y′ + p(t)y = 0. This means that y′1 + p(t)y′1 = 0.

Assume that y2 solves y′ + p(t)y = g(t). This means that y′2 + p(t)y2 = g(t).

Now, substitute y = y1 + y2, y
′ = y′1 + y′2 into the DE:

(y′1 + y′2) + p(t)(y1 + y2) = (y′1 + p(t)y1) + (y′2 + p(t)y2) = 0 + g(t) = g(t)

6. Exercises 27-31 focus on a class of DE’s known as Bernoulli equations. Exercise 27
steps you through the process:

y′ + p(t)y = q(t)yn ⇒ y′

yn
+ p(t)

1

yn−1
= q(t)

This is “almost” a linear DE- Let v = 1
yn−1 = y1−n. Then

v′ = (1− n)y1−n−1y′ = (1− n)
y′

yn

Therefore, if we multiply both sides by 1− n, then we can substitute:

(1− n)
y′

yn
+ (1− n)p(t)

1

yn−1
= (1− n)q(t) ⇒ v′ + (1− n)v = (1− n)q(t)

which is a linear DE in v. Now we’ll use this technique to solve Exercise 28, and 29
is similar:

Given t2y′ + 2ty = y3, divide by t2y3 to get the equation in a form we can use:

y′

y3
+

2

t

1

y2
=

1

t2

And we’ll substitute: v = y−2, so that v′ = −2y−3y′. To get the substitution, multiply
the DE by −2:

−2
y′

y3
− 4

t

1

y2
= − 2

t2
⇒ v′ − 4

t
v = − 2

t2

Now the integrating factor is t−4, so that

v(t) =
2

5t
+ Ct4 ⇒ 1

y2
=

2 + C2t
5

5t
⇒ y(t) = ±

√
5t

2 + C2t5



7. Exercise 33 gives us a chance to work with discontinuities (we will pick these up again
in Chapter 6, Laplace Transforms). We can solve it now, though. In this case, p(t)
depends on time, so we can solve it in pieces:

y′ + 2y = 0 y(0) = 1 0 ≤ t ≤ 1 And y′ + y = 0, t > 1

If we solve each of these, we get:

y(t) =

{
e−2t if 0 ≤ t ≤ 1
P e−t if t > 1

where P is any constant. If it is possible to find P so that y is continuous at all time,
then we should go ahead and note that: For y to be continuous, we must have:

e−2(1) = P e−1 ⇒ P = e−1

Therefore, for t > 1, we can write y as e−1e−t = e−(t+1)


