
Summary- Elements of 7.3 and 7.5

1. Definition: Given an n × n matrix A, if there is a constant λ and a
non-zero vector v so that

Av = λv

then λ is an eigenvalue, and v is an associated eigenvector.

2. Eigenvectors are not unique. That is, if v is an eigenvector for A, so is
kv (prove it!).

3. If you’re starting to compute them for the first time, start with the
original definition and work through to the system:

Av = λv⇔ av1 +bv2 = λv1
cv1 +dv2 = λv2

⇔ (a− λ)v1 +bv2 = 0
cv1 +(d− λ)v2 = 0

This system has a non-trivial solution for v1, v2 only if the determinant
of coefficients is 0: ∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = 0

And this is the characteristic equation. We solve this for the eigen-
values:

λ2 − (a+ d)λ+ (ad− bc) = 0 ⇔ λ2 − Tr(A)λ+ det(A) = 0

where Tr(A) is the trace of A (which we defined as a+d). We see from
the quadratic formula that the solution depends on the discriminant
(We’ll continue this on day 2).

4. Connecting to systems of differential equations, given

x′ = Ax

If we make the ansatz:

x(t) = eλtv = ert
[
v1
v2

]
=

[
eλtv1
eλtv2

]
then we saw that λ,v must be an eigenvalue, eigenvector of the matrix
A.

5. If there are two distinct real eigenvalues, the solution to the system
x′ = Ax is given by:

x = C1e
λ1tv1 + C2e

λ2tv2

6. The origin is always an equilibrium solution to x′ = Ax. Expanding the
ideas from Chapter 2, we can classify an equilibrium solution in many
ways. Last time, we classified the origin as a sink (if the eigenvalues are
both negative), a source (if both eigenvalues are positive), or a saddle
(if one eigenvalue is positive and one is negative), and we drew some
graphs of the phase plane.
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