
Selected Solutions, Section 3.2

13. This is a specific illustration of the superposition principle. Note that t2y′′ − 2y = 0 is
a linear, second order, homogeneous DE, and we are given y1 = t2 and y2 = t−1. We
then show (by substitution) that anything of the form c1y1 + c2y2 is also a solution.

14. In contrast to 13, we are given two solutions to a nonlinear DE, and we show that
superposition does not work. You should first verify that each function is itself a
solution. Then
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and adding these clearly will not be zero unless c1 = 0.

15. Shows the importance of superposition to only HOMOGENEOUS equations. To write
the solution using operator notation, we can take

L(y) = y′′ + p(t)y′ + q(t)y

where L is a linear operator, and we’re told that L(φ) = g(t). In that case,

L(cφ) = cL(φ) = cg(t) 6= g(t)

unless c = 1. Therefore, if φ solves the nonhomogeneous DE, we cannot take cφ as a
more general solution (as we did for homogeneous equations).

16. In this case, go ahead and substitute the given expression into the differential equation.
We will be able to find expressions for p(t) and q(t):

y = sin(t2) y′ = 2t cos(t2) 2 cos(t2)− 4t2 sin(t2)

so that y′′+p(t)y′+q(t)y = 0 becomes the following, after collecting terms with cos(t2)
together, and sin(t2) together:

(2 + 2tp(t)) cos(t2) + (−4t2 + q(t)) sin(t2) = 0

Since this must be zero for all t, each coefficient must be zero:

q(t) = 4t2

and

2 + 2p(t) = 0 ⇒ p(t) =
1

t
which is not continuous at t = 0.



17. Illustrates the important technique we also discussed in class- Given the Wronskian
(either as an expression, as in this exercise, or via Abel’s Theorem as in class), and one
solution f , we can find a second solution to the linear second order DE. In this case,
we find that

W (f, g) = e2tg′ − 2e2tg = 3e4t

which is a first order DE for g(t). Solving, we get:

g′ − 2g = 3e2t (ge−2t)′ = 3

and continuing, the general function g is:

g(t) = 3te2t + Ce2t

Since f = e2t, we can set C = 0 and just use 3te2t.

18. Same idea as 17.

19. Multiply out W (2f − g, f + 2g) to find:

W (2f − g, f + 2g) = 5W (f, g)

20. Same idea as 19.

22. Good for practice, lots of algebra. Using Wolfram Alpha, we can write y1 as the
solution to the following:

solve y’’+y’-2y=0, y(0)=1, y’(0)=0

which gives y1 = 1
3
e−2t + 2

3
et and y2 is the solution to the following:

solve y’’+y’-2y=0, y(0)=0, y’(0)=1

which is y2 = −1
3
e−2t + 1

3
et

We can contrast this with the usual method for finding a fundamental set, y1 = e−2t

and y1 = et (that’s why in class we said that Theorem 3.2.5 is more of a theoretical
result rather than a computational one).

26. Straightforward- Verify that each function is indeed a solution, then compute the Wron-
skian.

27. In this case, the discontinuity is a little tricky. Notice that

p(x) = − x

1− x cot(x)



so that points of discontinuity are where 1 − x cot(x) = 0. Simplifying this a bit, we
get

1− x cos(x)

sin(x)
= 0 ⇒ x cos(x) = sin(x) ⇒ x cos(x)− sin(x) = 0

And this just happens to be where the Wronskian is zero.

29. Use Abel’s Theorem to compute the Wronskian (up to a constant multiple):

W = Ce
∫

p(t) dt = Ce
∫

1+(2/t) dt = Ct2et

31. Same idea as 29.

34. The extra information, W (y1, y2)(1) = 2 allows us to solve for the constant C from
Abel’s Theorem. Therefore,

W (y1, y2)(t) =
C

t2

and using the extra info, C = 2. Therefore,

W (y1, y2)(5) =
2

52
=

2

25

36. If Ce−
∫

p(t) dt is constant, we must have p(t) = 0.

38. If y1, y2 are both zero at some point (call it t∗), then the Wronskian is zero at t∗:
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