Selected Solutions: Section 6.1

- 1. This is piecewise continuous, but not continuous at t = 1.
- 2. Not continuous and not piecewise continuous.
- 3. Continuous (so also piecewise continuous).
- 5. Sketched the solution in class- Use a table.
- 21. Recall that the inverse tangent function has a limit as $t \to \infty$; the function approaches $\pi/2$ (which is a vertical asymptote for the original tangent).
- 23. Use the test for divergence: If the limit of f(t) (as $t \to \infty$) is not zero, the improper integral diverges.
- 26. (Done in class) The Gamma Function $\Gamma(p)$
 - (a) If p > 0, then show $\Gamma(p+1) = p\Gamma(p)$:

$$\Gamma(p+1) = \int_0^\infty e^{-x} x^p \, dx$$

Integration by parts gives us the answer for p > 0. Actually, the following is true for p > -1:

$$\begin{array}{c|cccc} + & x^p & \mathrm{e}^{-x} \\ - & px^{p-1} & -\mathrm{e}^{-x} \end{array} \Rightarrow -x^p \mathrm{e}^{-x} \Big|_0^\infty + p \int_0^\infty \mathrm{e}^{-x} x^{p-1} \, dx$$

The quantity $-x^p e^{-x}$ goes to zero as $x \to \infty$ for any p. However, if p is negative we have to be careful about x^p as $x \to 0$. If we restrict p > 0, then $x^p e^{-x} = 0$ at zero, and we get:

$$\Gamma(p+1) = \int_0^\infty e^{-x} x^p dx = p \int_0^\infty e^{-x} x^{p-1} dx = p \Gamma(p)$$

(b) Show that $\Gamma(1) = 1$. We can do this directly by taking p = 0:

$$\int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 0 - -1 = 1$$

(c) If p is a positive integer, show that $\Gamma(n+1) = n!$. We can show this by induction. We note from parts (a) and (b) that:

$$\Gamma(1) = 1$$
 $\Gamma(2) = 1 \cdot \Gamma(1) = 1$ $\Gamma(3) = 2 \cdot \Gamma(2) = 2 \cdot 1$

In this case, we showed that the formula works if n = 1, 2 or 3 (not necessary, but it does give you a general idea).

Assume that the formula works for n = k, $\Gamma(k+1) = k!$. Show that it works for n = k+1. By Part (a),

$$\Gamma(k+2) = (k+1)\Gamma(k+1)$$

And by what we assumed, if k+2 is a positive integer, then

$$\Gamma(k+2) = (k+1)\Gamma(k+1) = (k+1)k! = (k+1)!$$

Therefore, we have proved by induction that $\Gamma(n+1) = n!$

(d) (This part can be omitted) By repeating the process in (c),

$$\Gamma(p+n) = p\Gamma(p+n-1) = (p+n-1)(p+n-2)\Gamma(p+n-2) =$$

$$= \dots = p(p+1)(p+2)\cdots(p+n-1)\Gamma(p)$$

- 27. (a) Hint: Let x = st, then do a change of variables.
 - (b) Straightforward- Use the result of 26.
 - (c) This is an interesting problem, but may be omitted. Assuming the formulas given in the text,

$$\mathcal{L}(t^{-1/2}) = \int_0^\infty e^{-st} \frac{1}{\sqrt{t}} dt$$

Looking at what we want, we'll try setting $x^2 = st$ and perform a substitution. Finding dx and dt, we get:

$$2x dx = s dt$$
 \Rightarrow $2\sqrt{st} dx = s dt$ \Rightarrow $\frac{2}{\sqrt{s}} dx = \frac{1}{\sqrt{t}} dt$

which is what we needed to get the expression in the text:

$$\mathcal{L}(t^{-1/2}) = \frac{2}{\sqrt{s}} \int_0^\infty e^{-x^2} dx = \sqrt{\frac{\pi}{s}}$$

(d) Finally, we'll use the result from 26: $\Gamma(3/2) = \frac{1}{2}\Gamma(1/2)$ to compute this:

$$\mathcal{L}(t^{1/2}) = \frac{\Gamma(3/2)}{s^{3/2}} = \frac{\sqrt{\pi}}{2s^{3/2}}$$