
Selected Solutions: Reading HW, Chapter 1

2. A mathematical model is a DE that describes some physical process.

4. An equilibrium solution is a solution that never changes in time (a constant solution).

6. The trade off in modeling: (p. 15) Accuracy versus Simplicity.

8. The three important questions about ODEs: Existence of a solution, Uniqueness of a
solution, Computability of a solution.

Selected Solutions: Section 1.1

• Section 1.1, 1-5 odd: For the general situation, y′ = ay + b, y(0) = y0, we know the
general solution from class:

y(t) = P eat − b

a
With y(0) = y0, we see that P = y0 + b

a
. Therefore:

1.1, 1 y′ = 3 − 2y, so a = −2 and b = 3. Since eat = e−2t, and this term goes to zero
as t → ∞, then y(t) will always tend to −b/a = 3/2. The only exception is the
equilibrium solution, y = 3/2 (If y(0) = 3/2, then y(t) = 3/2 for all t.

The behavior depends on the initial value: If y0 > 3/2, the function y(t) decreases
to 3/2 as t → ∞. If y0 < 3/2, the function increases to 3/2, and if y0 = 3/2, we
stay at 3/2.

– The other problems have similar solutions.

• Section 1.1, #7: Using what we have just learned in 1-5 odd, y′ = −y + 3 is one
possibility.

• Section 1.1, #15-20 Matching. An easy way to check is to look for the equilibrium
solutions- Where y′ = 0. For example, ODE (d) would have equilibria at 0 = y(y+ 3),
or y = 0 and y = 3. None of 15-20 have these on the direction field. On the other
hand, something like ODE (c) has y = 2 as the only equilibrium solution, and all other
solutions will tend away from it. Therefore, Exercise 16 is (c). Here are the others:

15(j) 16(c) 17(g) 18(b) 19(h) 20(e)

• Section 1.1, #22: Given

V =
4

3
πr3 A = 4πr2

if V ′ = c1A, then we need to write V in terms of A. Given the equations above,

r =
(

3

4π

)1/3

V 1/3 ⇒ A = 4π
(

3

4π

)2/3

V 2/3 = kV 2/3

Therefore, V ′ = c1A = c2V
2/3.



Selected Solutions, Section 1.2

• Section 1.2, 1(a,b): We’ll go ahead and use the formula we got earlier:

y(t) =

(
y0 +

b

a

)
eat − b

a

Then the two solutions are:

y(t) = (y0 − 5)e−t + 5 y(t) =
(
y0 −

5

2

)
e−2t +

5

2

Both DEs have a single equilbrium towards which all solutions tend. Solutions to the
second DE will tend towards its equilibrium much faster.

• Section 1.2, #3: If a, b are both positive, we have seen that solutions to y′ = −ay + b
will tend toward the equilibrium solution y = b/a.

• Section 1.2, #15: Since Newton’s Law of Cooling results in a DE of the form y′ = ay+b,
we can solve it. In this case, if T is the temp of the environment (constant), and k is
our constant of proportionality, then in terms of u(0) = u0, we can write the solution
as:

u(t) = (u0 − T )e−kt + T

In part(b), consider the following statements and their translations:

– The temperature difference at time τ : u(τ)− T .

– The temperature difference at time 0: u0 − T
– Therefore, if the temperature difference at time τ has cut the initial temperature

difference in half, we have:

u(τ)− T =
1

2
(u0 − T )

where u(τ) = (u0−T )e−kτ +T (substitute in to get a relationship between k and
τ).

Selected Solutions, Section 1.3

• Section 1.3, #7: Practice with hyperbolic sine and cosine (review sheet online):

y1 = et y′1 = et y′′1 = et ⇒ y′′1 − y1 = et − et = 0

With y2 = cosh(t) = 1
2
(et + e−t), and y′2 = sinh(t) and y′′2 = cosh(t), we have:

y′′2 − y2 = cosh(t)− cosh(t) = 0



• Section 1.3, #14: Recall from the Fundamental Theorem of Calculus that

d

dt

∫ t

0
g(s) ds = g(t)

Then use the product rule to differentiate the given y:

y = et
2
∫ t

0
e−s

2

ds+ et
2

y′ =
(
2tet

2
) ∫ t

0
g(s) ds+ et

2
(
e−t

2
)

+ 2tet
2

Therefore, y′ − 2ty simplifies:

(
2tet

2
) ∫ t

0
g(s) ds+ et

2
(
e−t

2
)

+ 2tet
2 − 2t

(
et

2
∫ t

0
e−s

2

ds+ et
2
)

= et
2−t2 = 1

• Section 1.3, #15-17: The basic idea here is that you want to be able to verify if a given
model equation is a solution. In these cases, the model equation is y = ert. In other
exercises, it will be different.

Generally speaking, if we substitute

y = ert, y′ = rert, y′′ = r2ert

into ay′′ + by′ + cy = 0, we get:

ar2ert + brert + cert = 0 ⇔ ert(ar2 + br + c) = 0

Then either ert = 0 (no solution), or ar2 + br + c = 0, which we solve by factoring or
the quadratic formula. Specifically, for #15, we get:

r + 2 = 0 ⇒ r = −2

And for #17, we get:

r2 + r − 6 = 0 ⇒ (r + 3)(r − 2) = 0 ⇒ r = 2,−3

• Section 1.3, #19 and 20: Similar to #15, 17 except that the model equation is y = tr,
y′ = rtr−1 and y′′ = r(r − 1)tr−2.

In #19, substituting into the DE we get

r(r − 1)tr + 4rtr + 2tr = 0 ⇒ tr (r(r − 1) + 4r + 2) = 0

Then, like before, solve the resulting quadratic for r (tr 6= 0, since t > 0).

• Section 1.3, #25:



– Given u = cos(x) cosh(y) (subscript 1 removed for notation), then

ux = − sin(x) cosh(y) uxx = − cos(x) cosh(y)

and, using the relationship from earlier: (cosh(y))′ = sinh(y) and (sinh(y))′ =
cosh(y),

uy = cos(x) sinh(y) uyy = cos(x) cosh(y)

Therefore, uxx + uyy = 0

– Similarly, if u2 = ln(x2 + y2), then (for the second derivative, use quotient rule
and simplify):

ux =
2x

x2 + y2
uxx =

−2(x2 − y2)
(x2 + y2)2

And, u2 is “symmetric” in x, y, so the derivatives in y will look the same (just
exchange the x, y):

uy =
2y

x2 + y2
uyy =

−2(y2 − x2)
(x2 + y2)2

=
2(x2 − y2)
(x2 + y2)2

and we see that uxx + uyy = 0.


