2.1: Some Detailed Examples
Summary: Given y' + p(t)y = f(t), we first find the integrating factor p(t):
ult) = el PO
Then multiply both sides of the DE by it:
p()y' + p(t)p(t)y = p(t) f(t)
Since u' = pp, then this becomes
p@)y +u' )y =) f(t) = (ub)y(t) = put)f ()

Then solve this by integrating both sides, then isolate y.

Example 1
ty +(t+1y=t y(n2)=1
SOLUTION: First get the DE in standard form, 3 + p(t)y = f(¢) by dividing by t:
/
oy =1
y + ; )

Now compute the integrating factor u:

pu(t) = ofp®ydt _ [ I+tdt _ ol () _ otoln(t) _ 4ot
Multiply both sides by the integrating factor so that the LHS becomes a “perfect derivative”:

tel(y' + (1+1/t)y) =te! = (te'y(t)) =t
We integrate by parts using a table (see the Review sheet):

t

+ t e
/tetdt — 1 e =tel—et4+0C
+ 0 €
so that
tely =te! —e' +C
and L c
H=1—-+4 —e
y(t) s+ e
To solve for C', put in ¢t = In(2) and y =
1 C C
1=1- — e o 1= = =2
m@) " me)" 2
The solution is: 1 o
Z/(t)zl——Jr;et



Example 2 (2.1, #4)

Solve: y' + (1/t)y = 3cos(2t), t > 0
SOLUTION: The DE is already in standard form, so we can compute p(t) directly:

N(t) _ efl/tdt _ eln(t) — ¢
Multiply both sides of the DE by ¢ so that the left side of the DE can be written as:
(yt)" = 3t cos(2t)

Integrate the right side of the DE by parts using a table (see the Review sheet):

+ |t | 3cos(2t) 3 3
— 1] 3sin(2t) = /3t cos(2t) dt = §tsin(2t) + 1 cos(2t)
+ 10| =3 cos(2t)

Therefore,

3 . 3 C
y(t) = D) sin(2t) + v cos(2t) + -

NOTE: The following s incorrect:

3 . 3
y(t) = 5 sin(2t) + pm cos(2t) + C

Example 3 (2.1, # 31)

Solve the IVP below and describe how the initial value yy changes the nature of the solution
y(2).

3
y - Y =3t + 2¢',  y(0) =wo

SOLUTION: The integrating factor can be computed quickly: pu(t) = e~2' so that
3 / 3 ¢
(e—ﬁty(t)) =3te 2" + 272

The first term is integrated by parts (use a table), and the second is done directly. The general
solution is then

4
y(t) = =2t — 3~ 4e' + ce!/?

Putting in the initial value, we see that ¢ = % + yo. How does this change the nature of the
solution? (Also see the direction field below)

3/2 will dominate the expression.

o Ast gets very large, and ¢ # 0, the term e
e We see that if yg > —16/3, then ¢ > 0 and so y(t) will diverge to positive infinity.

o If yy < —16/3, then ¢ < 0, and y(¢) will diverge (to negative infinity). We still go to
negative infinity if yo = —16/3 as well.
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Figure 1: Direction field with some solution curves, Exercise 31, 2.1

Example 4 (2.1, #37)

Find a linear differential equation for which all solutions tend to y = 4 — t? as t — oo.
SOLUTION: From our expression in linear DE’s, we might guess that:

y(t) =4 —t* +Ce™!

so that as t — 0o, y — 4 — t2. Now we'll see if y satisfies a linear DE. We’ll manipulate the
expressions so that something of the form ¢y’ + ay gets rid of the arbitrary constant C. One

way to do it:
y4y=(-2t—Ce ")+ (d—t+Ce)=4—2t—1

Our ODE is therefore:
Y dy=4—2t—1



