2.1: Some Detailed Examples

Summary: Given $y^{\prime}+p(t) y=f(t)$, we first find the integrating factor $\mu(t)$:

$$
\mu(t)=\mathrm{e}^{\int p(t) d t}
$$

Then multiply both sides of the DE by it:

$$
\mu(t) y^{\prime}+\mu(t) p(t) y=\mu(t) f(t)
$$

Since $\mu^{\prime}=\mu p$, then this becomes

$$
\mu(t) y^{\prime}+\mu^{\prime}(t) y=\mu(t) f(t) \quad \Rightarrow \quad(\mu(t) y(t))^{\prime}=\mu(t) f(t)
$$

Then solve this by integrating both sides, then isolate y.

Example 1

$$
t y^{\prime}+(t+1) y=t \quad y(\ln (2))=1
$$

SOLUTION: First get the DE in standard form, $y^{\prime}+p(t) y=f(t)$ by dividing by t :

$$
y^{\prime}+\frac{t+1}{t} y=1
$$

Now compute the integrating factor μ :

$$
\mu(t)=\mathrm{e}^{\int p(t) d t}=\mathrm{e}^{\int 1+\frac{1}{t} d t}=\mathrm{e}^{t+\ln (t)}=\mathrm{e}^{t} \mathrm{e}^{\ln (t)}=t \mathrm{e}^{t}
$$

Multiply both sides by the integrating factor so that the LHS becomes a "perfect derivative":

$$
t \mathrm{e}^{t}\left(y^{\prime}+(1+1 / t) y\right)=t \mathrm{e}^{t} \quad \Rightarrow \quad\left(t \mathrm{e}^{t} y(t)\right)^{\prime}=t \mathrm{e}^{t}
$$

We integrate by parts using a table (see the Review sheet):

$$
\int t \mathrm{e}^{t} d t \begin{array}{ll}
& +t \mathrm{e}^{t} \\
& -1 \mathrm{e}^{t} \\
& +0 \mathrm{e}^{t}
\end{array}=t \mathrm{e}^{t}-\mathrm{e}^{t}+C
$$

so that

$$
t \mathrm{e}^{t} y=t \mathrm{e}^{t}-\mathrm{e}^{t}+C
$$

and

$$
y(t)=1-\frac{1}{t}+\frac{C}{t} \mathrm{e}^{-t}
$$

To solve for C, put in $t=\ln (2)$ and $y=1$:

$$
1=1-\frac{1}{\ln (2)}+\frac{C}{\ln (2)} \mathrm{e}^{-\ln (2)} \quad \Rightarrow \quad 1=\frac{C}{2} \quad \Rightarrow \quad C=2
$$

The solution is:

$$
y(t)=1-\frac{1}{t}+\frac{2}{t} \mathrm{e}^{t}
$$

Example 2 (2.1, \#4)

Solve: $y^{\prime}+(1 / t) y=3 \cos (2 t), t>0$
SOLUTION: The DE is already in standard form, so we can compute $\mu(t)$ directly:

$$
\mu(t)=\mathrm{e}^{\int 1 / t d t}=\mathrm{e}^{\ln (t)}=t
$$

Multiply both sides of the DE by t so that the left side of the DE can be written as:

$$
(y t)^{\prime}=3 t \cos (2 t)
$$

Integrate the right side of the DE by parts using a table (see the Review sheet):

$$
\begin{array}{c|c|c}
+ & t & 3 \cos (2 t) \\
- & 1 & \frac{3}{2} \sin (2 t) \\
+ & 0 & -\frac{3}{4} \cos (2 t)
\end{array} \quad \Rightarrow \quad \int 3 t \cos (2 t) d t=\frac{3}{2} t \sin (2 t)+\frac{3}{4} \cos (2 t)
$$

Therefore,

$$
y(t)=\frac{3}{2} \sin (2 t)+\frac{3}{4 t} \cos (2 t)+\frac{C}{t}
$$

NOTE: The following is incorrect:

$$
y(t)=\frac{3}{2} \sin (2 t)+\frac{3}{4 t} \cos (2 t)+C
$$

Example 3 (2.1, \# 31)

Solve the IVP below and describe how the initial value y_{0} changes the nature of the solution $y(t)$.

$$
y^{\prime}-\frac{3}{2} y=3 t+2 \mathrm{e}^{t}, \quad y(0)=y_{0}
$$

SOLUTION: The integrating factor can be computed quickly: $\mu(t)=\mathrm{e}^{-\frac{3}{2} t}$ so that

$$
\left(\mathrm{e}^{-\frac{3}{2} t} y(t)\right)^{\prime}=3 t \mathrm{e}^{-\frac{3}{2} t}+2 \mathrm{e}^{-\frac{t}{2}}
$$

The first term is integrated by parts (use a table), and the second is done directly. The general solution is then

$$
y(t)=-2 t-\frac{4}{3}-4 \mathrm{e}^{t}+c \mathrm{e}^{3 t / 2}
$$

Putting in the initial value, we see that $c=\frac{16}{3}+y_{0}$. How does this change the nature of the solution? (Also see the direction field below)

- As t gets very large, and $c \neq 0$, the term $\mathrm{e}^{3 t / 2}$ will dominate the expression.
- We see that if $y_{0}>-16 / 3$, then $c>0$ and so $y(t)$ will diverge to positive infinity.
- If $y_{0}<-16 / 3$, then $c<0$, and $y(t)$ will diverge (to negative infinity). We still go to negative infinity if $y_{0}=-16 / 3$ as well.

Figure 1: Direction field with some solution curves, Exercise 31, 2.1

Example 4 (2.1, \#37)

Find a linear differential equation for which all solutions tend to $y=4-t^{2}$ as $t \rightarrow \infty$.
SOLUTION: From our expression in linear DE's, we might guess that:

$$
y(t)=4-t^{2}+C \mathrm{e}^{-t}
$$

so that as $t \rightarrow \infty, y \rightarrow 4-t^{2}$. Now we'll see if y satisfies a linear DE. We'll manipulate the expressions so that something of the form $y^{\prime}+a y$ gets rid of the arbitrary constant C. One way to do it:

$$
y^{\prime}+y=\left(-2 t-C \mathrm{e}^{-t}\right)+\left(4-t^{2}+C \mathrm{e}^{-t}\right)=4-2 t-t^{2}
$$

Our ODE is therefore:

$$
y^{\prime}+y=4-2 t-t^{2}
$$

