
2.1: Some Detailed Examples

Summary: Given y′ + p(t)y = f(t), we first find the integrating factor µ(t):

µ(t) = e
∫
p(t) dt

Then multiply both sides of the DE by it:

µ(t)y′ + µ(t)p(t)y = µ(t)f(t)

Since µ′ = µp, then this becomes

µ(t)y′ + µ′(t)y = µ(t)f(t) ⇒ (µ(t)y(t))′ = µ(t)f(t)

Then solve this by integrating both sides, then isolate y.

Example 1

ty′ + (t+ 1)y = t y(ln(2)) = 1

SOLUTION: First get the DE in standard form, y′ + p(t)y = f(t) by dividing by t:

y′ +
t+ 1

t
y = 1

Now compute the integrating factor µ:

µ(t) = e
∫
p(t) dt = e

∫
1+ 1

t
dt = et+ln(t) = eteln(t) = tet

Multiply both sides by the integrating factor so that the LHS becomes a “perfect derivative”:

tet(y′ + (1 + 1/t)y) = tet ⇒
(
tet y(t)

)′
= tet

We integrate by parts using a table (see the Review sheet):

∫
tet dt

+ t et

− 1 et

+ 0 et
= tet − et + C

so that
tety = tet − et + C

and

y(t) = 1− 1

t
+
C

t
e−t

To solve for C, put in t = ln(2) and y = 1:

1 = 1− 1

ln(2)
+

C

ln(2)
e− ln(2) ⇒ 1 =

C

2
⇒ C = 2

The solution is:

y(t) = 1− 1

t
+

2

t
et
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Example 2 (2.1, #4)

Solve: y′ + (1/t)y = 3 cos(2t), t > 0
SOLUTION: The DE is already in standard form, so we can compute µ(t) directly:

µ(t) = e
∫
1/t dt = eln(t) = t

Multiply both sides of the DE by t so that the left side of the DE can be written as:

(y t)′ = 3t cos(2t)

Integrate the right side of the DE by parts using a table (see the Review sheet):

+ t 3 cos(2t)
− 1 3

2
sin(2t)

+ 0 −3
4

cos(2t)
⇒

∫
3t cos(2t) dt =

3

2
t sin(2t) +

3

4
cos(2t)

Therefore,

y(t) =
3

2
sin(2t) +

3

4t
cos(2t) +

C

t

NOTE: The following is incorrect:

y(t) =
3

2
sin(2t) +

3

4t
cos(2t) + C

Example 3 (2.1, # 31)

Solve the IVP below and describe how the initial value y0 changes the nature of the solution
y(t).

y′ − 3

2
y = 3t+ 2et, y(0) = y0

SOLUTION: The integrating factor can be computed quickly: µ(t) = e−
3
2
t so that(

e−
3
2
ty(t)

)′
= 3te−

3
2
t + 2e−

t
2

The first term is integrated by parts (use a table), and the second is done directly. The general
solution is then

y(t) = −2t− 4

3
− 4et + ce3t/2

Putting in the initial value, we see that c = 16
3

+ y0. How does this change the nature of the
solution? (Also see the direction field below)

• As t gets very large, and c 6= 0, the term e3t/2 will dominate the expression.

• We see that if y0 > −16/3, then c > 0 and so y(t) will diverge to positive infinity.

• If y0 < −16/3, then c < 0, and y(t) will diverge (to negative infinity). We still go to
negative infinity if y0 = −16/3 as well.
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Figure 1: Direction field with some solution curves, Exercise 31, 2.1

Example 4 (2.1, #37)

Find a linear differential equation for which all solutions tend to y = 4− t2 as t→∞.
SOLUTION: From our expression in linear DE’s, we might guess that:

y(t) = 4− t2 + Ce−t

so that as t → ∞, y → 4 − t2. Now we’ll see if y satisfies a linear DE. We’ll manipulate the
expressions so that something of the form y′ + ay gets rid of the arbitrary constant C. One
way to do it:

y′ + y = (−2t− Ce−t) + (4− t2 + Ce−t) = 4− 2t− t2

Our ODE is therefore:
y′ + y = 4− 2t− t2
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