Solutions to Extra Practice Problems Linear Operators and Cramer's Rule

1. Let $R(f)$ be the operator defined by: $R(f)=f^{\prime \prime}(t)+3 t^{2} f(t)$. Find $R(f)$ for each function below:
(a) $f(t)=t^{2}$: Since $f^{\prime}(t)=2 t$ and $f^{\prime \prime}(t)=2$, we have:

$$
R\left(t^{2}\right)=2+3 t^{2} \cdot t^{2}=2+3 t^{4}
$$

(b) $f(t)=\sin (3 t)$: Since $f^{\prime}(t)=3 \cos (3 t)$ and $f^{\prime \prime}(t)=-9 \sin (3 t)$, we substitute:

$$
R(\sin (3 t))=-9 \sin (3 t)+3 t^{2} \sin (3 t)=\left(3 t^{2}-9\right) \sin (3 t)
$$

(c) $f(t)=2 t-5$

$$
R(2 t-5)=0+3 t^{2}(t-5)=3 t^{3}-15 t^{2}
$$

2. Let R be the operator defined in the previous problem. Show that R is a linear operator.

- $R(f+g)=(f+g)^{\prime \prime}+3 t^{2}(f+g)=f^{\prime \prime}+g^{\prime \prime}+3 t^{2} f+3 t^{2} g=f^{\prime \prime}+3 t^{2} f+g^{\prime \prime}+3 t^{2} g=R(f)+R(g)$
- $R(c f)=(c f)^{\prime \prime}+3 t^{2}(c f)=c f^{\prime \prime}+3 t^{2} c f=c\left(f^{\prime \prime}+3 t^{2} f\right)=c R(f)$

3. Let $F(y)=y^{\prime \prime}+y-5$. Explain why F is not linear.

Best way is to show it- This F does not satisfy either part of the definition. For example,
$F(x+y)=(x+y)^{\prime \prime}+(x+y)-5=x^{\prime \prime}+x+y^{\prime \prime}+y-5 \neq\left(x^{\prime \prime}+x-5\right)+\left(y^{\prime \prime}+y-5\right)=F(x)+F(y)$
4. Find the operator associated with the given differential equation, and classify it as linear or not linear:
(a) $y^{\prime}=t y^{2}+\cos (t)$

$$
L(y)=y^{\prime}-t y^{2}
$$

Not linear
(b) $y^{\prime \prime}=4 y^{\prime}+3 y+\sin (t)$

$$
L(y)=y^{\prime \prime}-4 y^{\prime}-3 y
$$

Linear
(c) $y^{\prime}=\mathrm{e}^{t} y+5$

$$
L(y)=y^{\prime}-\mathrm{e}^{t} y
$$

Linear (in y)
(d) $y^{\prime \prime}=-\cos (y)+\cos (t)$

$$
L(y)=y^{\prime \prime}+\cos (y)
$$

Not linear
5. Use Cramer's Rule to solve the following systems:
(a) $\begin{aligned} C_{1}+C_{2} & =2 \\ -2 C_{1}-3 C_{2} & =3\end{aligned}$ SOLUTION:

$$
C_{1}=\frac{\left|\begin{array}{rr}
2 & 1 \\
3 & -3
\end{array}\right|}{\left|\begin{array}{rr}
1 & 1 \\
-2 & -3
\end{array}\right|}=\frac{-9}{-1}=9 \quad C_{2}=\frac{\left|\begin{array}{rr}
1 & 2 \\
-2 & 3
\end{array}\right|}{\left|\begin{array}{rr}
1 & 1 \\
-2 & -3
\end{array}\right|}=\frac{7}{-1}=-7
$$

(b) $\begin{aligned} C_{1}+C_{2} & =y_{0} \\ r_{1} C_{1}+r_{2} C_{2} & =v_{0}\end{aligned}$

$$
C_{1}=\frac{r_{2} y_{0}-v_{0}}{r_{2}-r_{1}} \quad C_{2}=\frac{v_{0}-r_{1} y_{0}}{r_{2}-r_{1}}
$$

(c) $\quad C_{1}+C_{2}=2$
$3 C_{1}+C 2=1$

$$
C_{1}=-\frac{1}{2} \quad C_{2}=\frac{5}{2}
$$

(d) $\begin{aligned} 2 C_{1}-5 C_{2} & =3 \\ 6 C 1-15 C_{2} & =10\end{aligned}$ The denominator to Cramer's Rule is zero- No solution.
(e) $\begin{aligned} & 2 x-3 y=1 \\ & 3 x-2 y=1\end{aligned}$

$$
x=1, y=1
$$

6. Suppose L is a linear operator. Let y_{1}, y_{2} each solve the equation $L(y)=0$ (so that $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$). Show that anything of the form $c_{1} y_{1}+c_{2} y_{2}$ will also solve $L(y)=0$. SOLUTION:

$$
L\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} L\left(y_{1}\right)+c_{2} L\left(y_{2}\right)=c_{1} \cdot 0+c_{2} \cdot 0=0
$$

Go back to Section 2.4, page 76 and look at Exercises 23-26. This section generalizes those results.

