Solutions to Extra Practice Problems Linear Operators and Cramer's Rule

- 1. Let R(f) be the operator defined by: $R(f) = f''(t) + 3t^2f(t)$. Find R(f) for each function below:
 - (a) $f(t) = t^2$: Since f'(t) = 2t and f''(t) = 2, we have:

$$R(t^2) = 2 + 3t^2 \cdot t^2 = 2 + 3t^4$$

(b) $f(t) = \sin(3t)$: Since $f'(t) = 3\cos(3t)$ and $f''(t) = -9\sin(3t)$, we substitute:

 $R(\sin(3t)) = -9\sin(3t) + 3t^2\sin(3t) = (3t^2 - 9)\sin(3t)$

(c) f(t) = 2t - 5

$$R(2t-5) = 0 + 3t^{2}(t-5) = 3t^{3} - 15t^{2}$$

- 2. Let R be the operator defined in the previous problem. Show that R is a linear operator.
 - $R(f+g) = (f+g)'' + 3t^2(f+g) = f'' + g'' + 3t^2f + 3t^2g = f'' + 3t^2f + g'' + 3t^2g = R(f) + R(g)$ • $R(cf) = (cf)'' + 3t^2(cf) = cf'' + 3t^2cf = c(f'' + 3t^2f) = cR(f)$

3. Let F(y) = y'' + y - 5. Explain why F is not linear.

Best way is to show it- This F does not satisfy either part of the definition. For example,

$$F(x+y) = (x+y)'' + (x+y) - 5 = x'' + x + y'' + y - 5 \neq (x''+x-5) + (y''+y-5) = F(x) + F(y)$$

4. Find the operator associated with the given differential equation, and classify it as linear or not linear:
(a) y' = ty² + cos(t)

Not linear

- (b) $y'' = 4y' + 3y + \sin(t)$
- L(y) = y'' 4y' 3y

 $L(y) = y' - ty^2$

Linear

(c) $y' = e^t y + 5$

$$L(y) = y' - e^t y$$

Linear (in y)

(d)
$$y'' = -\cos(y) + \cos(t)$$

$$L(y) = y'' + \cos(y)$$

Not linear

5. Use Cramer's Rule to solve the following systems:

(a)
$$C_1 + C_2 = 2$$

 $-2C_1 - 3C_2 = 3$ SOLUTION:
 $C_1 = \frac{\begin{vmatrix} 2 & 1 \\ 3 & -3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix}} = \frac{-9}{-1} = 9$ $C_2 = \frac{\begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ -2 & -3 \end{vmatrix}} = \frac{7}{-1} = -7$

(b)
$$C_1 + C_2 = y_0$$

 $r_1C_1 + r_2C_2 = v_0$
 $C_1 = \frac{r_2y_0 - v_0}{r_2 - r_1}$ $C_2 = \frac{v_0 - r_1y_0}{r_2 - r_1}$
(c) $C_1 + C_2 = 2$
 $3C_1 + C_2 = 1$
 $C_1 = -\frac{1}{2}$ $C_2 = \frac{5}{2}$

- (d) $\begin{array}{ccc} 2C_1-5C_2 &= 3\\ 6C1-15C_2 &= 10 \end{array}$ The denominator to Cramer's Rule is zero- No solution.
- (e) $\begin{array}{ccc} 2x 3y &= 1\\ 3x 2y &= 1 \end{array}$

$$x = 1, y = 1$$

6. Suppose L is a linear operator. Let y_1, y_2 each solve the equation L(y) = 0 (so that $L(y_1) = 0$ and $L(y_2) = 0$). Show that anything of the form $c_1y_1 + c_2y_2$ will also solve L(y) = 0. SOLUTION:

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2) = c_1 \cdot 0 + c_2 \cdot 0 = 0$$

Go back to Section 2.4, page 76 and look at Exercises 23-26. This section generalizes those results.