# Power Series in Differential Equations 

Prof. Doug Hundley

Whitman College
April 18, 2014

## Last time: Review of Power Series (5.1)

The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ can converge either:

## Last time: Review of Power Series (5.1)

The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ can converge either:

- Only at $x=x_{0}$


## Last time: Review of Power Series (5.1)

The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ can converge either:

- Only at $x=x_{0}$
- for all $x$.


## Last time: Review of Power Series (5.1)

The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ can converge either:

- Only at $x=x_{0}$
- for all $x$.
- for $\left|x-x_{0}\right|<\rho$ and diverges $\left|x-x_{0}\right|>\rho$.


## Last time: Review of Power Series (5.1)

The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ can converge either:

- Only at $x=x_{0}$
- for all $x$.
- for $\left|x-x_{0}\right|<\rho$ and diverges $\left|x-x_{0}\right|>\rho$.
- In this case, $\rho$ is the RADIUS of CONVERGENCE.


## Last time: Review of Power Series (5.1)

The series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ can converge either:

- Only at $x=x_{0}$
- for all $x$.
- for $\left|x-x_{0}\right|<\rho$ and diverges $\left|x-x_{0}\right|>\rho$.
- In this case, $\rho$ is the RADIUS of CONVERGENCE.
- Check the endpoints, $\left|x-x_{0}\right|=\rho$, separately to find the INTERVAL of CONVERGENCE.


## The Ratio Test (to determine the radius of conv)

For a power series, the ratio test takes the following form:
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|\left|x-x_{0}\right|^{n}}{\left|a_{n}\right|\left|x-x_{0}\right|^{n}}=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\left|x-x_{0}\right|=\left[\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\right]\left|x-x_{0}\right|$
If the limit in the brackets is $r$, then overall the limit is:

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|\left|x-x_{0}\right|^{n}}{\left|a_{n}\right|\left|x-x_{0}\right|^{n}}=r\left|x-x_{0}\right|
$$

Conclusion: If $r\left|x-x_{0}\right|<1$, the power series converges absolutely. Equivalently, the series converges absolutely if:

$$
\left|x-x_{0}\right|<\frac{1}{r}=\rho
$$

and this $\rho$ is the RADIUS of CONVERGENCE.

## Example 2

Find the radius and interval of convergence:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}(x+1)^{n}
$$

## Example 2

Find the radius and interval of convergence:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 3^{n}}(x+1)^{n}
$$

Algebra before the limit to simplify:

$$
\frac{|x+1|^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{|x+1|^{n}}=\frac{n}{n+1} \cdot \frac{|x+1|}{3}
$$

Now the limit:

$$
\left(\lim _{n \rightarrow \infty} \frac{n}{n+1}\right) \cdot \frac{|x+1|}{3}=\frac{|x+1|}{3}<1 \Rightarrow|x+1|<3
$$

## Continuing the example

Find the interval of convergence:

$$
|x+1|<3 \quad \Rightarrow \quad-3<x+1<3 \quad \Rightarrow \quad-4<x<2
$$

## Continuing the example

Find the interval of convergence:

$$
|x+1|<3 \quad \Rightarrow \quad-3<x+1<3 \quad \Rightarrow \quad-4<x<2
$$

Checking endpoints:

- Substitute $x=-4$ into the sum:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n} \Rightarrow \quad \text { Divergent }
$$

- Substitute $x=2$ into the sum:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

Radius of convergence: 3. Interval of convergence: $(-4,2]$

## The Taylor Series

Given a function $f$ and a base point $x_{0}$, the Taylor series for $f$ at $x_{0}$ is given by:
$f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots$
or

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

If $f(x)$ is equal to its Taylor series, then $f$ is said to be analytic.
Definition: The Maclaurin series for $f$ is the Taylor series based at $x_{0}=0$.

## Example:

Find the Maclaurin series for $f(x)=\mathrm{e}^{x}$ at $x=0$.
SOLUTION: Since $f^{(n)}(0)=1$ for all $n$,

$$
\mathrm{e}^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

The radius of convergence is $\infty$.

## Template Series

$$
\begin{gathered}
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \\
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{gathered}
$$

## Algebra on the Index, Example

Simplify to one sum that uses the term $x^{n}$ :

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}=\sum_{n=?}^{?}\left(\begin{array}{lll} 
& C_{n} & ) x^{n}
\end{array}\right.
$$

SOLUTION: Try writing out the first few terms:

$$
\begin{gathered}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}=2 a_{2}+2 \cdot 3 a_{3} x+3 \cdot 4 a_{4} x^{2}+4 \cdot 5 a_{5} x^{3}+\cdots \\
\sum_{k=1}^{\infty} k a_{k} x^{k}=a_{1} x+2 a_{2} x^{2}+3 a_{3} x^{3}+\cdots
\end{gathered}
$$

Powers of $x$ don't line up: To write this as a single sum, we need to manipulate the sums so that the powers of $x$ line up.

## SOLUTION 1

Pad the second equation by starting at $k=0$ :

$$
\begin{aligned}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2} & =2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2}+5 \cdot 4 a_{5} x^{3}+\cdots \\
\sum_{k=0}^{\infty} k a_{k} x^{k} & =0+a_{1} x+2 a_{2} x^{2}+3 a_{3} x^{3}+\cdots
\end{aligned}
$$

Substitute $n=m-2$ (or $m=n+2$ ) into the first sum, and $n=k$ into the second sum:

$$
\begin{aligned}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2} & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \\
\sum_{k=0}^{\infty} k a_{k} x^{k} & =\sum_{n=0}^{\infty} n a_{n} x^{n}
\end{aligned}
$$

## Finishing the solution:

$$
\begin{aligned}
& \sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left((n+2)(n+1) a_{n+2}+n a_{n}\right) x^{n}
\end{aligned}
$$

## Alternate Solution:

We could have started both indices using $x^{1}$ instead of $x^{0}$. Here are the sums again:

$$
\begin{aligned}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2} & =2 a_{2}+\left[3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2}+5 \cdot 4 a_{5} x^{3}+\cdots\right] \\
\sum_{k=1}^{\infty} k a_{k} x^{k} & =\quad a_{1} x+2 a_{2} x^{2}+3 a_{3} x^{3}+\cdots
\end{aligned}
$$

In this case,

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}=2 a_{2}+\sum_{m=3}^{\infty} m(m-1) a_{m} x^{m-2}
$$

and let $n=m-2$ to get

$$
2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+2) a_{n+2} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n}
$$

## Using Series in DEs

Given $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=v_{0}$, assume $y, p, q$ are analytic at $x_{0}$.

Ansatz:

$$
y(t)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

so that
$y^{\prime}(t)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}$ and $y^{\prime \prime}(t)=\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}$

## The Big Picture

Substituting the series into the DE will give something like:

$$
\sum(\ldots)+\sum(\ldots)+\sum(\ldots)=0
$$

We will want to write this in the form:

$$
\sum\left(\begin{array}{ll} 
& C_{n}
\end{array}\right) x^{n}=0
$$

Then we will set $C_{n}=0$ for each $n$.

