Summary- Elements of Chapters 7

The goal of this chapter is to solve a linear system of differential equations (we will also be able to solve some special nonlinear systems).

Special Nonlinear Systems

Given the general nonlinear system, $\frac{d x}{d t}=f(x, y)$ and $\frac{d y}{d t}=g(x, y)$, we can find two kinds of solutions: Equilibrium solutions (more in Chapter 9), and solution curves (also known as integral curves) that are solutions to:

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{g(x, y)}{f(x, y)}
$$

If we're lucky, this will simplify to a form from Chapter 2 (first order equations). Notice that with a linear system, $x^{\prime}=a x+b y, y^{\prime}=c x+d y$, then

$$
\frac{d y}{d x}=\frac{c x+d y}{a x+b y}=\frac{c+d \frac{y}{x}}{a+b \frac{y}{x}}
$$

is at least homogeneous (but may also be something else).

Linear Systems

We're talking about three ways to solve a linear system:

- Using $d y / d x$, as in the last section.
- Converting the system to a second order equation (then use Chapter 3 methods)
- Using eigenvalues and eigenvectors. This last form will also be used to do some analysis in Chapter 9.

We started with some basic matrix algebra- Be sure you know how to perform matrixvector multiplication and matrix-matrix multiplication for 2×2 matrices.

Eigenvalues and Eigenvectors

1. Definition: Given an $n \times n$ matrix A, if there is a constant λ and a non-zero vector \mathbf{v} so that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

then λ is an eigenvalue, and \mathbf{v} is an associated eigenvector.
NOTE: Eigenvectors are not unique. That is, if \mathbf{v} is an eigenvector for A, so is $k \mathbf{v}$ (prove it!).
2. If you have not had linear algebra, the main point below is the right-most system of equations. It is important to remember that one!

$$
A \mathbf{v}=\lambda \mathbf{v} \Leftrightarrow \begin{align*}
& a v_{1}+b v_{2}=\lambda v_{1} \tag{1}\\
& c v_{1}+d v_{2}=\lambda v_{2}
\end{align*} \Leftrightarrow \begin{array}{r}
(a-\lambda) v_{1}
\end{array}+b v_{2}=0
$$

This system has a non-trivial solution for v_{1}, v_{2} only if the determinant of coefficients is 0 :

$$
\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right|=0
$$

And this is the characteristic equation. We solve this for the eigenvalues:

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)=0 \quad \Leftrightarrow \lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0
$$

where $\operatorname{Tr}(A)$ is the trace of A (which we defined as $a+d$). For each λ, we must go back and solve Equation (1).
3. Notation: Often it is easier to use the notation $A-\lambda I$ to represent the matrix:

$$
A-\lambda I=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]
$$

- Using this notation, the characteristic equation becomes: $|A-\lambda I|=0$.
- Using this notation, the eigenvector equation is: $(A-\lambda I) \mathbf{v}=\mathbf{0}$
- The generalized eigenvector \mathbf{w} solves: $(A-\lambda I) \mathbf{w}=\mathbf{v}$

Solve $\mathbf{x}^{\prime}=A \mathrm{x}$ using Eigenvectors/Eigenvalues

We make the ansatz:

$$
\mathbf{x}(t)=\mathrm{e}^{\lambda t} \mathbf{v}=\mathrm{e}^{\lambda t}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{e}^{\lambda t} v_{1} \\
\mathrm{e}^{\lambda t} v_{2}
\end{array}\right]
$$

We showed that this implies λ, \mathbf{v} must be an eigenvalue, eigenvector of the matrix A.
The eigenvalues are found by solving the characteristic equation:

$$
\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0 \quad \lambda=\frac{\operatorname{Tr}(A) \pm \sqrt{\Delta}}{2}
$$

The solution is one of three cases, depending on Δ :

- Real λ_{1}, λ_{2} with two eigenvectors, $\mathbf{v}_{1}, \mathbf{v}_{2}$:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} \mathrm{e}^{\lambda_{2} t} \mathbf{v}_{2}
$$

- Complex $\lambda=a+i b, \mathbf{v}$ (we only need one):

$$
\mathbf{x}(t)=C_{1} \operatorname{Re}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)
$$

Computational Note: As in Chapter 3, our solutions here are real solutions- That means you should not have an i in your final answer.

- One eigenvalue, one eigenvector \mathbf{v}. Get \mathbf{w} that solves $(A-\lambda I) \mathbf{w}=\mathbf{v}$. Then:

$$
\mathbf{x}(t)=\mathrm{e}^{\lambda t}\left(C_{1} \mathbf{v}+C_{2}(t \mathbf{v}+\mathbf{w})\right)
$$

Computational Note: You should find that there are an infinite number of possible vectors w- Just choose one convenient representative.

You might find this helpful- Below there is a chart comparing the solutions from Chapter 3 to the solutions in Chapter 7:

	Chapter 3	Chapter 7
DE:	$a y^{\prime \prime}+b y^{\prime}+c y=0$	$\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$
Ansatz:	$y=\mathrm{e}^{r t}$	$\mathbf{x}(t)=\mathrm{e}^{\lambda t} \mathbf{v}$
Characteristic Equation:	$a r^{2}+b r+c=0$	$\lambda^{2}-\operatorname{Tr}(A) \lambda+\operatorname{det}(A)=0$
Case 1:	$\begin{aligned} & \Delta>0: \\ & y(t)=C_{1} \mathrm{e}^{r_{1} t}+C_{2} \mathrm{e}^{r_{2} t} \end{aligned}$	$\begin{aligned} & \Delta>0: \\ & \mathbf{x}(t)=C_{1} \mathrm{e}^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} \mathrm{e}^{\lambda_{2} t} \mathbf{v}_{2} \end{aligned}$
Case 2:	$\begin{aligned} & \Delta<0, r=\alpha+\beta i \\ & y(t)=C_{1} \operatorname{Re}\left(\mathrm{e}^{r t}\right)+C_{2} \operatorname{Im}\left(\mathrm{e}^{r t}\right) \end{aligned}$	$\begin{aligned} & \Delta<0, \lambda=\alpha+\beta i \\ & \mathbf{x}(t)=C_{1} \operatorname{Re}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right) \end{aligned}$
Case 3:	$\Delta=0$ $y(t)=\mathrm{e}^{r t}\left(C_{1}+C_{2} t\right)$	$\begin{aligned} & \Delta=0: \\ & \mathbf{v} \text { solves }(A-\lambda I) \mathbf{v}=\mathbf{0} \text { (as usual) } \\ & \mathbf{w} \text { solves }(A-\lambda I) \mathbf{w}=\mathbf{v} \\ & \mathbf{x}(t)=\mathrm{e}^{\lambda t}\left(C_{1} \mathbf{v}+C_{2}(t \mathbf{v}+\mathbf{w})\right) \end{aligned}$

Classification of the Equilibria

The origin is always an equilibrium solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, and we can use the Poincaré Diagram to help us classify the origin. The Poincaré Diagram is based on the discriminant:

$$
\Delta=(\operatorname{Tr}(A))^{2}-4 \operatorname{det}(A)
$$

If $\Delta=0$, we have a parabola in the $(\operatorname{Tr}(A), \operatorname{det}(A))$ plane. Inside the parabola is where $\Delta<0$ and outside the parabola is where $\Delta>0$.

