Homework Solutions: Nonlinear systems

1. Fill in the following and under "Poincaré" classify the origin. Then, given the eigenvalues/eigenvectors, also write down the general solution to $\mathbf{x}' = A\mathbf{x}$. In the case that there is only one eigenvector, the second column of V shows the generalized eigenvector \mathbf{w} .

System	$\operatorname{Tr}(A)$	$\det(A)$	Δ	Poincare Fill in	λ	V
$\left[\begin{array}{rrr} 3 & -2 \\ 4 & -1 \end{array}\right]$	2	5	-16	Spiral Source	1 + 2i	$\left[\begin{array}{c}1\\1-i\end{array}\right]$
$\left[\begin{array}{rrr}2 & -1\\3 & -2\end{array}\right]$	0	-1	(4)	Saddle	-1, 1	$\left[\begin{array}{rrr}1 & 1\\ 3 & 1\end{array}\right]$
$\left[\begin{array}{rrr} 0 & 2 \\ -2 & 0 \end{array}\right]$	0	4	-16	Center	2i	$\left[\begin{array}{c}-i\\1\end{array}\right]$
$\left[\begin{array}{rrr} 4 & -2 \\ 8 & -4 \end{array}\right]$	0	0	0	Uniform Motion	0, 0	$\left[\begin{array}{rr}1&0\\2&-1/2\end{array}\right]$

The solution to each system is given below:

System	Solution
$\left[\begin{array}{rrr} 3 & -2 \\ 4 & -1 \end{array}\right]$	$C_1 e^t \left[\begin{array}{c} \cos(2t) \\ \cos(2t) + \sin(2t) \end{array} \right] + C_2 e^t \left[\begin{array}{c} \sin(2t) \\ -\cos(2t) + \sin(2t) \end{array} \right]$
$\left[\begin{array}{rrr} 2 & -1 \\ 3 & -2 \end{array}\right]$	$C_1 \mathrm{e}^{-t} \begin{bmatrix} 1\\3 \end{bmatrix} + C_2 \mathrm{e}^t \begin{bmatrix} 1\\1 \end{bmatrix}$
$\left[\begin{array}{rr} 0 & 2 \\ -2 & 0 \end{array}\right]$	$C_1 \left[\begin{array}{c} \sin(2t) \\ \cos(2t) \end{array} \right] + C_2 \left[\begin{array}{c} -\cos(2t) \\ \sin(2t) \end{array} \right]$
$\left[\begin{array}{rr} 4 & -2 \\ 8 & -4 \end{array}\right]$	$C_1 \left[\begin{array}{c} 1\\2 \end{array} \right] + C_2 \left[t \left[\begin{array}{c} 1\\2 \end{array} \right] + \left[\begin{array}{c} 0\\-1/2 \end{array} \right] \right]$

- 2. Explain how the classification of the origin changes by changing the α in the system:
 - (a) $\mathbf{x}' = \begin{bmatrix} 0 & \alpha \\ 1 & -2 \end{bmatrix} \mathbf{x}$

SOLUTION: The number line keeps track of where each quantity is zero, positive, negative: In this case, the trace is always -2, the det(A) = $-\alpha$ (which is zero at 0), and the discriminant is $\Delta = 4 + 4\alpha$ (which is zero at $\alpha = -1$). Now set up the number line for α :

$det(A) = -\alpha$ $\Delta = 4 + 4\alpha$	+	+	_
$\Delta = 4 + 4\alpha$	_	+	+
	$\alpha < -1$	$-1 < \alpha < 0$	$\alpha > 0$
	Spiral Sink	Sink	Saddle
	Sink		

And at $\alpha = -1$, the origin is a degenerate sink, and at $\alpha = 0$, we have a line of stable fixed points.

(b) $\mathbf{x}' = \begin{bmatrix} 2 & \alpha \\ 1 & -1 \end{bmatrix} \mathbf{x}$

SOLUTION: Another number line with Tr(A) = 1 (which never changes sign), $det(A) = -(2+\alpha)$ which is zero at -2, and $Delta = 9 + 4\alpha$, which is zero at -9/4.

$$\begin{array}{c|cccc} \det(A) = -(2+\alpha) & + & + & -\\ \Delta = 9 + 4\alpha & - & + & +\\ \hline & & \alpha < -9/4 & -9/4 < \alpha < -2 & \alpha > 2\\ & & \text{Spiral} & \text{Source} & \text{Saddle}\\ & & & \text{Source} \end{array}$$

And at $\alpha = -9/4$, the origin is a degenerate source, and at $\alpha = -2$, we have a line of unstable fixed points.

(c)
$$\mathbf{x}' = \begin{bmatrix} \alpha & 10 \\ -1 & -4 \end{bmatrix} \mathbf{x}$$

SOLUTION: In this case, the relevant numbers are:

$$Tr(A) = \alpha - 4 \qquad \det(A) = -4\alpha + 10 \qquad \Delta = \alpha^2 + 8\alpha - 24$$

Unfortunately, the roots to the quadratic aren't integers: $\Delta = 0$ for $alpha = -4 \pm 2\sqrt{10} \approx 2.32, -10.32$. We list the other zeros below and construct the number line:

The special cases are:

- $\alpha = -4 2\sqrt{10}$, Degenerate sink.
- $\alpha = -4 + 2\sqrt{10}$, Degenerate sink.
- $\alpha = 2.5$, Line of stable fixed points.
- $\alpha = 4$, Still a saddle

- 3/4 For the following *nonlinear* systems, find the equilibrium solutions (the derivatives are with respect to t, as usual). Then linearize and classify them (We'll do the last two exercises together):
 - (a) x' = x xy, y' = y + 2xy

SOLUTION: There are two equilibria, one at (0,0) and one at (-1/2,1). The Jacobian matrix is given below:, where it is also evaluated at the two equilibria (respectively):

$$J = \left[\begin{array}{cc} 1 - y & -x \\ 2y & 1 + 2x \end{array} \right]$$

At the origin:

$$J(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{array}{c} \operatorname{Tr}(A) = 1 \\ \Rightarrow \quad \det(A) = 1 \\ \Delta = 0 \end{array} \Rightarrow \text{Degen Source}$$

Actually, this is the case we gave in class where we actually get two eigenvectors for $\lambda = 1, 1$. It is easy to solve this one directly.

$$J(-1/2,1) = \begin{bmatrix} 0 & 1/2 \\ 2 & 0 \end{bmatrix} \qquad \Rightarrow \qquad \begin{array}{c} \operatorname{Tr}(A) = 0 \\ \det(A) = -1 \end{array} \Rightarrow \text{Saddle}$$

And here is a screen shot of the direction field where we can verify our analysis:

(b) x' = y(2 - x - y), y' = -x - y - 2xy

SOLUTION: From the first equation, y = 0 or x + y = 2. Putting that into the second equation, we get either x = 0 (so (0, 0) is one solution), or -2 - 2(2 - x) = 0, or $x^2 - 2x - 1 = 0$, so that

$$x = 1 + \sqrt{2}$$
, $y = 1 - \sqrt{2}$ and $x = 1 - \sqrt{2}$ $y = 1 + \sqrt{2}$

In this case, the Jacobian was:

$$J = \begin{bmatrix} -y & 2-x-2y\\ -1-2y & -1-2x \end{bmatrix}$$

Therefore, at the three equilibria, we had:

$$J(0,0) = \begin{bmatrix} 0 & 2\\ -1 & -1 - 2x \end{bmatrix} \qquad \Rightarrow \qquad \begin{array}{c} \operatorname{Tr}(A) = -1\\ \det(A) = 2\\ \Delta = -7 \end{array} \Rightarrow \text{Spiral Sink}$$

At the other two equilibria, we should find saddles (the numbers were a little messy). Here is the plot of the direction field, where we see these equilibria clearly:

(c) $x' = 1 + 2y, y' = 1 - 3x^2$

For the last one, there are two equilibria, $x = \pm 1/\sqrt{3}$ and y = -1/2. The Jacobian matrix is:

$$J = \left[\begin{array}{cc} 0 & 2\\ -6x & 0 \end{array} \right]$$

At $x = 1/\sqrt{3}$, the equilibrium is a center, and at $x = -1/\sqrt{3}$, it is a saddle.

