Homework Solutions: Nonlinear systems

1. Fill in the following and under "Poincaré" classify the origin. Then, given the eigenvalues/eigenvectors, also write down the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$. In the case that there is only one eigenvector, the second column of V shows the generalized eigenvector \mathbf{w}.

System $\operatorname{Tr}(A) \operatorname{det}(A) \quad \Delta \quad$ Poincare $\quad \lambda \quad V$
Fill in

$$
\begin{array}{llllccc}
{\left[\begin{array}{rr}
3 & -2 \\
4 & -1
\end{array}\right]} & 2 & 5 & -16 & \text { Spiral Source } & 1+2 i & {\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]} \\
{\left[\begin{array}{rr}
2 & -1 \\
3 & -2
\end{array}\right]} & 0 & -1 & (4) & \text { Saddle } & -1,1 & {\left[\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right]} \\
{\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right]} & 0 & 4 & -16 & \text { Center } & 2 i & {\left[\begin{array}{c}
-i \\
1
\end{array}\right]} \\
{\left[\begin{array}{rr}
4 & -2 \\
8 & -4
\end{array}\right]} & 0 & 0 & 0 & \text { Uniform Motion } & 0,0 & {\left[\begin{array}{cc}
1 & 0 \\
2 & -1 / 2
\end{array}\right]}
\end{array}
$$

The solution to each system is given below:

$$
\text { System } \quad \text { Solution }
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \quad C_{1} \mathrm{e}^{t}\left[\begin{array}{r}
\cos (2 t) \\
\cos (2 t)+\sin (2 t)
\end{array}\right]+C_{2} \mathrm{e}^{t}\left[\begin{array}{r}
\sin (2 t) \\
-\cos (2 t)+\sin (2 t)
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]} \\
& C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+C_{2} \mathrm{e}^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{rr}
0 & 2 \\
-2 & 0
\end{array}\right]} \\
& C_{1}\left[\begin{array}{c}
\sin (2 t) \\
\cos (2 t)
\end{array}\right]+C_{2}\left[\begin{array}{r}
-\cos (2 t) \\
\sin (2 t)
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]} \\
& C_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2}\left[t\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{r}
0 \\
-1 / 2
\end{array}\right]\right]
\end{aligned}
$$

2. Explain how the classification of the origin changes by changing the α in the system:
(a) $\mathbf{x}^{\prime}=\left[\begin{array}{rr}0 & \alpha \\ 1 & -2\end{array}\right] \mathbf{x}$

SOLUTION: The number line keeps track of where each quantity is zero, positive, negative: In this case, the trace is always -2 , the $\operatorname{det}(A)=-\alpha$ (which is zero at 0), and the discriminant is
$\Delta=4+4 \alpha$ (which is zero at $\alpha=-1$). Now set up the number line for α :

$\operatorname{det}(A)=-\alpha$	+	+	-
$\Delta=4+4 \alpha$	-	+	+
	$\alpha<-1$	$-1<\alpha<0$	$\alpha>0$
	Spiral	Sink	Saddle
	Sink		

And at $\alpha=-1$, the origin is a degenerate sink, and at $\alpha=0$, we have a line of stable fixed points.
(b) $\mathbf{x}^{\prime}=\left[\begin{array}{rr}2 & \alpha \\ 1 & -1\end{array}\right] \mathbf{x}$

SOLUTION: Another number line with $\operatorname{Tr}(A)=1$ (which never changes sign $), \operatorname{det}(A)=-(2+\alpha)$ which is zero at -2 , and Delta $=$ $9+4 \alpha$, which is zero at $-9 / 4$.

$\operatorname{det}(A)=-(2+\alpha)$	+	+	-
$\Delta=9+4 \alpha$	-	+	+
	$\alpha<-9 / 4$	$-9 / 4<\alpha<-2$	$\alpha>2$
	Spiral	Source	Saddle
	Source		

And at $\alpha=-9 / 4$, the origin is a degenerate source, and at $\alpha=$ -2 , we have a line of unstable fixed points.
(c) $\mathbf{x}^{\prime}=\left[\begin{array}{rr}\alpha & 10 \\ -1 & -4\end{array}\right] \mathbf{x}$

SOLUTION: In this case, the relevant numbers are:

$$
\operatorname{Tr}(A)=\alpha-4 \quad \operatorname{det}(A)=-4 \alpha+10 \quad \Delta=\alpha^{2}+8 \alpha-24
$$

Unfortunately, the roots to the quadratic aren't integers: $\Delta=0$ for alpha $=-4 \pm 2 \sqrt{10} \approx 2.32,-10.32$. We list the other zeros below and construct the number line:

$\operatorname{Tr}(A)$	-	-	-	-	+
$\operatorname{det}(A)$	+	+	+	-	-
Δ	+	-	+	+	+
	$\alpha<-10.3$	$-10.3<\alpha<2.3$	$2.3<\alpha<2.5$	$2.5<\alpha<4$	$\alpha>4$
	Sink	Spiral	Sink	Saddle	Saddle

The special cases are:

- $\alpha=-4-2 \sqrt{10}$, Degenerate sink.
- $\alpha=-4+2 \sqrt{10}$, Degenerate sink.
- $\alpha=2.5$, Line of stable fixed points.
- $\alpha=4$, Still a saddle

3/4 For the following nonlinear systems, find the equilibrium solutions (the derivatives are with respect to t, as usual). Then linearize and classify them (We'll do the last two exercises together):
(a) $x^{\prime}=x-x y, y^{\prime}=y+2 x y$

SOLUTION: There are two equilibria, one at $(0,0)$ and one at $(-1 / 2,1)$. The Jacobian matrix is given below:, where it is also evaluated at the two equilibria (respectively):

$$
J=\left[\begin{array}{cc}
1-y & -x \\
2 y & 1+2 x
\end{array}\right]
$$

At the origin:

$$
J(0,0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \Rightarrow \quad \begin{aligned}
\operatorname{Tr}(A) & =1 \\
\operatorname{det}(A) & =1 \\
\Delta & =0
\end{aligned} \Rightarrow \text { Degen Source }
$$

Actually, this is the case we gave in class where we actually get two eigenvectors for $\lambda=1,1$. It is easy to solve this one directly.

$$
J(-1 / 2,1)=\left[\begin{array}{rr}
0 & 1 / 2 \\
2 & 0
\end{array}\right] \quad \Rightarrow \quad \begin{array}{r}
\operatorname{Tr}(A)=0 \\
\operatorname{det}(A)=-1
\end{array} \Rightarrow \text { Saddle }
$$

And here is a screen shot of the direction field where we can verify our analysis:

(b) $x^{\prime}=y(2-x-y), y^{\prime}=-x-y-2 x y$

SOLUTION: From the first equation, $y=0$ or $x+y=2$. Putting that into the second equation, we get either $x=0$ (so $(0,0)$ is one solution), or $-2-2(2-x)=0$, or $x^{2}-2 x-1=0$, so that

$$
x=1+\sqrt{2}, \quad y=1-\sqrt{2} \quad \text { and } \quad x=1-\sqrt{2} \quad y=1+\sqrt{2}
$$

In this case, the Jacobian was:

$$
J=\left[\begin{array}{cc}
-y & 2-x-2 y \\
-1-2 y & -1-2 x
\end{array}\right]
$$

Therefore, at the three equilibria, we had:
$J(0,0)=\left[\begin{array}{cc}0 & 2 \\ -1 & -1-2 x\end{array}\right] \quad \Rightarrow \quad \begin{array}{r}\operatorname{Tr}(A)=-1 \\ \operatorname{det}(A)=2 \\ \Delta=-7\end{array} \Rightarrow$ Spiral Sink
At the other two equilibria, we should find saddles (the numbers were a little messy). Here is the plot of the direction field, where we see these equilibria clearly:

(c) $x^{\prime}=1+2 y, y^{\prime}=1-3 x^{2}$

For the last one, there are two equilibria, $x= \pm 1 / \sqrt{3}$ and $y=$ $-1 / 2$. The Jacobian matrix is:

$$
J=\left[\begin{array}{cc}
0 & 2 \\
-6 x & 0
\end{array}\right]
$$

At $x=1 / \sqrt{3}$, the equilibrium is a center, and at $x=-1 / \sqrt{3}$, it is a saddle.

