Quick Overview: Complex Numbers

February 24, 2012

1 Initial Definitions
Definition 1 The complex number z is defined as:

z=a+bi (1)
where a, b are real numbers and i = /—1.

Remarks about the definition:
e Engineers typically use j instead of 3.

e Examples of complex numbers:

542, 3—+2, 3, —5i

e Powers of i:

1 =—1 2= —i
=1 = i
0 =—1 iT=—i

e All real numbers are also complex (by taking b = 0).

2 Visualizing Complex Numbers
A complex number is defined by it’s two real numbers. If we have z = a + bi, then:
Definition 2 The real part of a + bi is a,

Re(z) =Re(a + bi) =a

The imaginary part of a + bi is b,
Im(z) = Im(a + bi) = b

To visualize a complex number, we use the complex plane C, where the horizontal (or z-) axis is for the
real part, and the vertical axis is for the imaginary part. That is, a + bi is plotted as the point (a,b).

In Figure 1, we can see that it is also possible to represent the point a + bi, or (a,b) in polar form, by
computing its modulus (or size), and angle (or argument):

r=|z] = Va? +b? 0 = arg(z)

We have to be a bit careful defining ¢, since there are many ways to write ¢ (and we could add multiples of 27
as well). Typically, the argument of the complex number z = a + bi is defined to be the 4-quadrant “inverse
tangent”! that returns —7 < 0 < 7.

1For example, in Maple this special angle is computed as arctan(b,a), and in Matlab the command is atan2(b,a).
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Figure 1: Visualizing z = a + bi in the complex plane. Shown are the modulus (or length) r and the argument

(or angle) 6.

That is, formally we can define the argument as:

tan=1(b/a)
tan=t(b/a) + 7

1 .
0 = arg(a + bi) = tan"(b/a) — =

ifa>0
ifa<0Oand b>0
ifa<Oand b<0

Quad I and IV)
Quad 1I)
Quad III)

e L N R

/2 ifxr=0andy >0 (Upper imag axis)
—7/2 ifr=0and y <0 (Lower imag axis)
Undefined ifr=0andy=0 (The origin)

Examples

Find the modulus r and argument 6 for the following numbers (Hint: It is easiest to visualize these in the

plane):
e z=—3: SOLUTION: r =3 and 0 ==
e z=2i: SOLUTION: r =2 and § = /2
e z=—1+1i: SOLUTION: r = /2 and 0 = tan~'(—1) + 7 = —T4T= %’r
e z = —3 — 2i (Numerical approx from Calculator OK):
SOLUTION: 7 = v/14 and § = tan™!(2/3) — 7 ~ 0.588 — 7 ~ —2.55 rad

3 Operations on Complex Numbers

3.1 The Conjugate of a Complex Number
If z = a + bi is a complex number, then its conjugate, denoted by z is a — bi. For example,
2=3+51=2=3-"5i

z=1=>2zZ=—1 z2=3=>z=3

Graphically, the conjugate of a complex number is it’s mirror image across the horizontal axis.
magnitude r and argument 6, then Z has the same magnitude with a negative argument.

If z has



3.2 Addition/Subtraction, Multiplication/Division

To add (or subtract) two complex numbers, add (or subtract) the real parts and the imaginary parts separately:
(a+bi)E(c+di)=(a+c)£(b+d)i
To multiply, expand it as if you were multiplying polynomials:
(a +bi)(c + di) = ac + adi + bci + bdi* = (ac — bd) + (ad + be)i
and simplify using i2 = —1. Note what happens when you multiply a number by its conjugate:
22 = (a +bi)(a — bi) = a® — abi + abi — b*i* = a® + b* = |2|?

Division by complex numbers z,w: Z, is defined by translating it to real number division (rationalize the
denominator):

Example:
1+20 (1+2)3+5) =7 11,

3_5i 34 BETREYE

4 The Polar Form of Complex Numbers

4.1 FEuler’s Formula

Any point on the unit circle can be written as (cos(6),sin(6)), which corresponds to the complex number
cos(0) + isin(0). It is possible to show the following directly, but we’ll use it as a definition:

Definition (Euler’s Formula): e? = cos(f) + isin(6).

4.2 Polar Form of a + bi:
The polar form is defined as:

0

z=re where 1= |z| = Va? + b2 0 = arg(z)

4.2.1 Examples

Given the complex number in a + bi form, give the polar form, and vice-versa:
1. z = 2i SOLUTION: Since r = 2 and 0 = 7/2, z = 2¢'/?
2. z=2ei"/3

We recall that cos(m/3) = 1/2 and sin(7/3) = v/3/2, so

2 = 2(cos(—7/3) +isin(—n/3)) = 2(cos(r/3) — isin(n/3)) =1 — V/3i

5 Exponentials and Logs
The logarithm of a complex number is easy to compute if the number is in polar form:
In(a + bi) =In (reie) =In(r) +In (ew) =In(r) + 0

The logarithm of zero is left undefined (as in the real case). However, we can now compute the log of a
negative number:

. .
1= =1

In(—1) =In(1-€7) =in or the log of i :  In(7) = In(1) + g 5



Note that the usual rules of exponentiation and logarithms still apply.
To exponentiate a number, we convert it to multiplication (a trick we used in Calculus when dealing with

things like z%):

ab — ebin(a)

Example, 2° = ') = cos(In(2)) 4 i sin(In(2))

Example: v/1+14i=(1+ i)1/2 = (\/56”/4) V2 _ (21/4)6”/8
Example: ZZ — ei In(é) — ei(iﬂ'/2) — ef7r/2

6 Real Polynomials and Complex Numbers

If az? + bz + ¢ = 0, then the solutions come from the quadratic formula:
—b+vb?% — dac
r—= -
2a

In the past, we only took real roots. Now we can use complex roots. For example, the roots of £2 +1 = 0 are
r=14and x = —i.
Check:
(x—i)(z+i)=a’4+ai—zi—i® =2 +1

Some facts about polynomials when we allow complex roots:

1. An n*™® degree polynomial can always be factored into n roots. (Unlike if we only have real roots!) This
is the Fundamental Theorem of Algebra.

2. If a + bi is a root to a real polynomial, then a — bi must also be a root. This is sometimes referred to as
“roots must come in conjugate pairs”.

7 Exercises
1. Suppose the roots to a cubic polynomial are a = 3, b = 1—2i and ¢ = 14-2i. Compute (z—a)(z—b)(x—c).
2. Find the roots to 22 — 2z + 10. Write them in polar form.

3. Show that: . L=
Re(z) = 5 Im(z) =

4. For the following, let z; = —3 4 2i, 20 = —44
(a) Compute 2123, 22/21
(b) Write z; and z2 in polar form.
5. In each problem, rewrite each of the following in the form a + bi:
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(b
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T
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6. For fun, compute the logarithm of each number:

(a) In(=3)

(b) In(—1+1)

(c) In(2e3%)



