Exercise Set 3 Solutions

In this homework set, we will practice finding eigenvalues and eigenvectors when the eigenvalues are either complex or the matrix is defective.

1. Given a 2×2 defective matrix A with double eigenvalue λ , eigenvector \mathbf{v} and generalized eigenvector \mathbf{w} , show that the function:

$$e^{\lambda t}(t\mathbf{v}+\mathbf{w})$$

solves the differential equation $\mathbf{x}' = A\mathbf{x}$.

SOLUTION: Substitute it into the DE to see what needs to be true. First, we compute \mathbf{x}' , then we'll compare that to $A\mathbf{x}$. To differentiate, we need to use the product rule:

$$\mathbf{x}' = \lambda e^{\lambda t} (t\mathbf{v} + \mathbf{w}) + e^{\lambda t} \mathbf{v}$$

We'll multiply $A\mathbf{x}$ and use the fact that $A\mathbf{v} = \lambda \mathbf{v}$:

$$Ae^{\lambda t}(t\mathbf{v} + \mathbf{w}) = e^{\lambda t}(tA\mathbf{v} + A\mathbf{w}) = e^{\lambda t}(t\lambda v + A\mathbf{w})$$

Set them equal:

$$\lambda e^{\lambda t} (t\mathbf{v} + \mathbf{w}) + e^{\lambda t} \mathbf{v} = e^{\lambda t} (t\lambda \mathbf{v} + A\mathbf{w})$$

Divide by $e^{\lambda t}$ and simplify:

$$\lambda \mathbf{w} + \mathbf{v} = A\mathbf{w} \quad \Rightarrow \quad (A - \lambda I)\mathbf{w} = \mathbf{v}$$

You may leave this equation as $A\mathbf{w} - \lambda \mathbf{w} = \mathbf{v}$ as well. This is exactly the condition that we defined \mathbf{w} to have.

- 2. Exercises 1, 3, pg. 409 (Section 7.6, solve with complex evals/evecs) Solutions in the text.
- 3. Exercises 1, 3, 7, pg. 429 (Section 7.8, solve with degenerate matrix) Solutions in the text.
- 4. Exercises 13, 15, pg 410 (Section 7.6, try to analyze with parameter-We'll do these more in depth later as well).

Solutions in the text.

5. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to $\mathbf{x}' = A\mathbf{x}$. Furthermore, classify the origin as a sink, source, spiral sink, spiral source, saddle, or none of the above.

(a)
$$\lambda = -1 + 2i$$
 $\mathbf{v} = \begin{bmatrix} 1 - i \\ 2 \end{bmatrix}$

SOLUTION: We can classify without looking at the solution. The eigenvalues are complex and not pure imaginary. The real part is -1, which means that e^{-t} will be a factor of the solution. Therefore, we have a *spiral sink*.

The general solution is found by first computing $e^{\lambda t}$ **v**:

$$\mathrm{e}^{-t}(\cos(2t) + i\sin(2t)) \left[\begin{array}{c} 1 - i \\ 2 \end{array} \right] =$$

$$\mathrm{e}^{-t} \left[\begin{array}{c} (\cos(2t) + \sin(2t)) + i(\sin(2t) - \cos(2t)) \\ 2\cos(2t) + i \cdot 2\sin(2t) \end{array} \right]$$

Then we take $C_1 \operatorname{Re}(e^{\lambda t} \mathbf{v}) + C_2 \operatorname{Im}(e^{\lambda t} \mathbf{v})$:

$$\mathbf{x}(t) = C_1 e^{-t} \begin{bmatrix} \cos(2t) + \sin(2t) \\ 2\cos(2t) \end{bmatrix} + C_2 e^{-t} \begin{bmatrix} \sin(2t) - \cos(2t) \\ 2\sin(2t) \end{bmatrix}$$

(b)
$$\lambda = -2, 3$$
 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

SOLUTION: With two real, distinct solutions, the origin will be either a sink, a source or a saddle. Since the eigenvalues are opposite in sign, the origin is a saddle. The solution is:

$$\mathbf{x}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 e^{3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(c)
$$\lambda = -2, -2$$
 $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

SOLUTION: This is a double root- The origin is still a sink, since all nearby solutions will tend to zero (both roots are negative). Furthermore, the general solution is:

$$\mathbf{x}(t) = C_1 e^{-2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + + C_2 e^{-2t} \left(t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right)$$

(d)
$$\lambda = 2, -3$$
 $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

SOLUTION: This is almost identical to part (b), and the origin is a saddle.

$$\mathbf{x}(t) = C_1 e^{2t} \begin{bmatrix} -1 \\ 2 \end{bmatrix} + C_2 e^{-3t} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

(e)
$$\lambda = 1 + 3i$$
 $\mathbf{v} = \begin{bmatrix} 1 \\ 1 - i \end{bmatrix}$

SOLUTION: Similar to part (a), but in this case (because the real part of λ is +1, the origin will be a spiral source instead of a sink.

$$\mathbf{x}(t) = C_1 e^t \begin{bmatrix} \cos(3t) \\ \cos(3t) + \sin(3t) \end{bmatrix} + C_2 e^{-t} \begin{bmatrix} \sin(3t) - \cos(2t) \\ \sin(3t) - \cos(3t) \end{bmatrix}$$

(f)
$$\lambda = 2i$$
 $\mathbf{v} = \begin{bmatrix} 1+i\\1 \end{bmatrix}$

SOLUTION: In the case of a pure imaginary λ , the solutions will be periodic (closed curves in the phase plane). In this case, the origin is called a "center" (we'll discuss this more next time). The solution proceeds as usual by first computing $e^{\lambda t}\mathbf{v}$, etc:

$$\mathbf{x}(t) = C_1 \begin{bmatrix} \cos(2t) - \sin(2t) \\ \cos(2t) \end{bmatrix} + C_2 \begin{bmatrix} \sin(2t) + \cos(2t) \\ \sin(2t) \end{bmatrix}$$

6. Use the Poincaré Diagram on page 497, where p = Tr(A) and $q = \det(A)$ to determine the stability of the origin for $\mathbf{x}' = A\mathbf{x}$, if A is given below:

NOTE FOR THE SOLUTION: The curve shown is where the discriminant is zero:

$$\Delta = 0$$
 or $(\operatorname{Tr}(A))^2 - 4\det(A) = 0$

If we think of $\mathrm{Tr}(A)$ as an x-variable and $\det(A)$ as a y-variable, then this becomes

$$x^2 - 4y = 0 \quad \Rightarrow \quad y = \frac{1}{4}x^2$$

And this is the parabola you see. Inside the parabola is where the discriminant is negative, outside is where the discriminant is positive. With the three numbers Tr(A), $\det(A)$ and Δ , you should be able to find where you are in the diagram. I've attached the solutions to the following by scanning in a hand drawing.

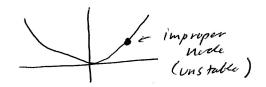
(a)
$$\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix}$$

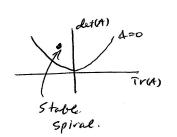
(c)
$$\begin{bmatrix} -1 & -1 \\ 0 & -\frac{1}{4} \end{bmatrix}$$

$$(d) \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix}$$

(6(a)
$$\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} Tr(A) = 4 > 0 \\ det(A) = 4 > 6 \\ A = 4^2 - 4 \cdot 4 = 0 \end{bmatrix}$$
 (unstable)



6(b)
$$\begin{bmatrix} -\frac{1}{2} & 1 \\ -1 & -\frac{1}{2} \end{bmatrix}$$
 \Rightarrow $A = 1 - 4.5/4 < 0$ \Rightarrow $A = 0$ \Rightarrow $A = 1 - 4.5/4 < 0$



$$6(c) \begin{bmatrix} -1 & -1 \\ 0 & -\frac{1}{4} \end{bmatrix} \Rightarrow Tr(A) = -\frac{5}{4} < 0$$

$$\Delta = \frac{15}{16} - 4 \cdot \frac{1}{4} > 0$$
State

6 (d)
$$\begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} Tr(A) = 2 \\ Act(A) = 5 \end{bmatrix}$$

 $A = 4 - 4.5 = 20$

