Last time:

- Vocab: ODE, PDE, IVP
- Skills: Be able to verify that $\phi(t)$ is a solution to a DE.
- Given the general solution to y' = ay + b (it is $y = Pe^{at} \frac{b}{a}$)
- Three models: Free fall, Mice/Owls, Newton's Law of Cooling.

0

Order of a DE

• Order of a DE (order of highest derivative)

()

• Order of a DE (order of highest derivative) Example: Order of $y' + y^3 = t^2 + 4t + 5$ is:

0

• Order of a DE (order of highest derivative) Example: Order of $y' + y^3 = t^2 + 4t + 5$ is: 1

0

- Order of a DE (order of highest derivative) Example: Order of $y' + y^3 = t^2 + 4t + 5$ is: 1
- Linear DE

()

- Order of a DE (order of highest derivative) Example: Order of $y' + y^3 = t^2 + 4t + 5$ is: 1
- Linear DE (linear in y, y', y", etc)

()

- Order of a DE (order of highest derivative) Example: Order of $y' + y^3 = t^2 + 4t + 5$ is: 1
- Linear DE (linear in y, y', y", etc) Example: $y' + y^3 = t^2 + 4t$ is

0

- Order of a DE (order of highest derivative) Example: Order of $y' + y^3 = t^2 + 4t + 5$ is: 1
- Linear DE (linear in y, y', y'', etc) Example: $y' + y^3 = t^2 + 4t$ is nonlinear (y^3) Example: $y'' + 3y' + 5y = 4t^2$ is

0

- Order of a DE (order of highest derivative) Example: Order of $v' + v^3 = t^2 + 4t + 5$ is: 1
- Linear DE (linear in y, y', y'', etc) Example: $v' + v^3 = t^2 + 4t$ is nonlinear (v^3) Example: $y'' + 3y' + 5y = 4t^2$ is linear (in y, y', etc). (More on this later)

2 / 13

()

• Existence: Does every ODE y' = f(t, y) have a solution $y = \phi(t)$?

()

- Existence: Does every ODE y' = f(t, y) have a solution $y = \phi(t)$? (No).
- A second question is one of uniqueness: If the ODE has a solution, does it have more than one?

()

- Existence: Does every ODE y' = f(t, y) have a solution $y = \phi(t)$? (No).
- A second question is one of uniqueness: If the ODE has a solution, does it have more than one?
- Third is a practical question: If the ODE has a solution, can we compute it?

3 / 13

January 23, 2014

()

- Existence: Does every ODE y' = f(t, y) have a solution $y = \phi(t)$? (No).
- A second question is one of uniqueness: If the ODE has a solution, does it have more than one?
- Third is a practical question: If the ODE has a solution, can we compute it?

TODAY: Visualizing solutions, solving a linear equation.

January 23, 2014 3 / 13

Visualizing solutions to DE

Visualizing solutions to DE

$$y' = ay + b$$
 $y(t) = P_0e^{at} - \frac{b}{a}$

Cases:

- If $P_0 = 0$, then y(t) is constant (y = -b/a). Definition: An equilibrium solution is a constant solution y = k so that y'=0.
- Otherwise:
 - Fig. If a>0, then the solutions will all "blow up" $(|y(t)| o \infty)$ except one solution.
 - If a < 0, then all solutions tend toward equilibrium.

4 / 13

()

January 23, 2014

0

A differential equation is like a "road map":

$$y'=f(t,y)$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve y(t).

5 / 13

January 23, 2014

A differential equation is like a "road map":

$$y'=f(t,y)$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good approximation to y.

()

A differential equation is like a "road map":

$$y'=f(t,y)$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good approximation to y.

Definition: A direction field is a plot in the (t, y) plane that give the local tangent lines to the solution to a first order ODE.

Example: $y' = t - y^2$

0

A differential equation is like a "road map":

$$y'=f(t,y)$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good approximation to y.

Definition: A direction field is a plot in the (t, y) plane that give the local tangent lines to the solution to a first order ODE.

Example: $y' = t - y^2$

In drawing a picture, we might consider curves of constant slope. For example, with zero slope:

$$0 = t - y^2 \quad \Rightarrow \quad y^2 = t$$

◆ロ > ◆母 > ◆達 > ◆達 > ・ 差 ・ 夕 Q @

0

Figure: Direction Field with Isoclines: y' = -2, y' = 0, y' = 1

Give an ODE of the form y' = ay + b whose direction field looks like:

Same question as before:

Choose a DE

$$y' = 3 - y$$

$$y' = y(y+3)$$

3
$$y' = y(3 - y)$$

$$y' = 2y - 1$$

Homework Hint: #22, Section 1.1

$$V = \frac{4}{3}\pi r^3 \qquad A = 4\pi r^2$$

so if V' = kA, give V' in terms of V only.

-0

Homework Hint: #14, Section 1.3

Differentiate the following with respect to t:

$$f(t) \int_0^t G(s) ds$$

SOLUTION:

0

$$f'(t)\int_0^t G(s)\,ds + f(t)G(t)$$

12 / 13

January 23, 2014

Section 2.1: Linear DEs

Definition: Linear first order is

$$y' + a(x)y = f(x) \qquad \qquad y' + a(t)y = f(t)$$

Solution is by first computing an "integrating factor". We'll do this on the board.

()