
Solutions to the Review Questions

Short Answer/True or False

1. True or False, and explain:

(a) If y′ = y + 2t, then 0 = y + 2t is an equilibrium solution.

False: This is an isocline associated with a slope of zero, and furthermore, y = −2t is not a solution,
and it is not a constant.

(b) Let dy
dt = 1 + y2. The Existence and Uniqueness theorem tells us that the solution (for any initial

value) will be valid for all t. (If true, say why. If False, solve the DE).

False. The E & U Theorem tells that a unique solution will exist for any initial condition (since
1 + y2 and 2y are continuous everywhere), but it does not say on what interval the solution will
exist. For example, if we take y(0) = y0 and solve, we get:∫

dy

1 + y2
=

∫
dt ⇒ tan−1(y) = t+ C ⇒ C = tan−1(y0)

Therefore,
y = tan(t+ tan−1(y0))

where
−π

2
< t+ tan−1(y0) <

π

2

(so that the tangent function is invertible).

(c) If y′ = cos(y), then the solutions are periodic.

FALSE. A function y is periodic if it is periodic in t, and once a function increases (for example),
it cannot decrease again (since the slopes along any horizontal line are constant).

(d) All autonomous equations are separable.

True. Any autonomous equation can be written as y′ = f(y) · 1, which is separable and

∫
dy

f(y)
=∫

dt.

(e) All linear (first order) equations are Bernoulli.

True- It is possible to categorize them this way:

y′ + p(t)y = g(t)y0

but we typically will not write them this way (so you could argue “false” as well).

(f) All separable equations are exact.

True. If the equation is separable, then y′ = f(y)g(x), which can be written:

1

f(y)

dy

dx
= g(x) ⇒ −g(x) +

1

f(y)

dy

dx
= 0

Now, if M(x, y) = −g(x), then My = 0, and N(x, y) = 1/f(y) means Nx = 0.

2. The Existence and Uniqueness Theorems:

• Linear: y′ + p(t)y = g(t) at (t0, y0):

If p, g are continuous on an interval I that contains t0, then there exists a unique solution to the
initial value problem and that solution is valid for all t in the interval I.

• General Case: y′ = f(t, y), (t0, y0):

Let the functions f and fy be continuous in some open rectangle R containing the point (t0, y0).
Then there exists an interval about t0, (t0 − h, t0 + h) contained in R for which a unique solution
to the IVP exists.

Side Remark 1: To determine such a time interval, we must solve the DE.

Side Remark 2: We broke out the theorem in class into two components (existence and uniqueness).
You can use either the theorem there or as it stated above.
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3. To solve y′ = y1/3, we separate variables:

y−1/3 dy = dt

Before going further, it is good practice to note that the previous step is valid, as long as y 6= 0. The
case that y = 0 can be taken separately- In fact, we see that y(t) = 0 is an equilibrium solution that
satisfies the initial condition.

Going on, we integrate:

3

2
y2/3 = t+ C1 ⇒ y2/3 =

2

3
t+ C2 ⇒ y =

(
2

3
t+ C2

)3/2

We can solve for C2 using the initial condition: 0 = C2, so that

y =

(
2t

3

)3/2

We can verify that this is indeed a solution by substituting it back into the DE (not necessary; just a
way of double-checking yourself):

y′ =
3

2

(
2t

3

)1/2

· 2

3
=

(
2t

3

)1/2

And on the other hand,

y1/3 =

[(
2t

3

)3/2
]1/3

=

(
2t

3

)1/2

Therefore, this is indeed a second solution to the IVP.

Of course, the Existence and Uniqueness Theorem cannot be “violated” since it is a theorem, but in this
case, the hypotheses are not satisfied:

y′ = f(t, y) ⇒ f(t, y) = y1/3

In this case, f is continuous at (0, 0) but ∂f/∂y is not.

Solve:

1.
dy

dx
=
x2 − 2y

x

Linear: y′ + 2
xy = x Solve with an integrating factor of x2 to get:

y =
1

4
x2 +

C

x2

2. (x+ y) dx− (x− y) dy = 0. Hint: Let v = y/x.

Given the hint, rewrite the DE:

dy

dx
=
x+ y

x− y
=

1 + (y/x)

1− (y/x)
=

1 + v

1− v

With the substitution xv = y, we get the substitution for dy/dx:

v + xv′ = y′

So that the DE becomes:

v + xv′ =
1 + v

1− v
⇒ xv′ =

1 + v

1− v
− v =

1 + v − v(1− v)

1 + v
=

1 + v2

1− v

2



The equation is now separable:

1− v
1 + v2

dv =
1

x
dx ⇒

∫
1

1 + v2
dv −

∫
v

1 + v2
dv = ln |x|+ C

Therefore,

tan−1(v)− 1

2
ln(1 + v2) = ln |x|+ C

Lastly, back-substitute v = y/x.

3.
dy

dx
=

2x+ y

3 + 3y2 − x
y(0) = 0.

This is exact. The solution is, with y(0) = 0,

−x2 − xy + 3y + y3 = 0

4.
dy

dx
= − 2xy + y2 + 1

x2 + 2xy

This is exact. The solution is: x2y + xy2 + x = c

5. dy
dt = 2 cos(3t) y(0) = 2

This is linear and separable. y(t) = 2
3 sin(3t) + 2, and the solution is valid for all time.

6. y′ − 1
2y = 0 y(0) = 200. State the interval on which the solution is valid.

This is linear and separable. As a linear equation, the solution will be valid on all t (since p(t) = − 1
2 ).

The solution is y(t) = 200e(1/2)t

7. This is separable (or Bernoulli):∫
y−2 dy =

∫
(1− 2x) dx ⇒ −1

y
= x− x2 + C

Put in the initial condition (IC): 6 = 0 + C. Now finish solving explicitly:

y(x) =
1

x2 − x− 6
=

1

(x− 3)(x+ 2)

The solution is valid on the interval (−2, 3).

8. y′ − 1
2y = e2t y(0) = 1

This is linear (but not separable). y(t) = 2
3e2t + 1

3e(1/2)t

9. y′ = 1
2y(3− y)

Autonomous (and separable). Integrate using partial fractions:∫
1

y(3− y)
dy =

1

2

∫
dt

Simplify your answer for y by dividing numerator and denominator appropriately to get:

y(t) =
3

(1/A)e−(3/2)t + 1

10. sin(2t) dt+ cos(3y) dy = 0

Separable (and/or exact): −12 cos(2t) + 1
3 sin(3y) = C

11. y′ = xy2

Separable: y =
1

−(1/2)x2 − C
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12.
dy

dx
− 3

2x
y =

2x

y
(Hint: Think Bernoulli)

SOLUTION: Multiply by y to get

yy′ − 3

2x
y2 = 2x

So (following what we did for the general Bernoulli eqn), let v = y2, and therefore v′ = 2yy′. Multiply
by 2 to get the right form, then substitute

2yy′ − 3

x
y2 = 4x ⇒ v′ − 3

x
v = 4x

Now it is a standard linear DE. Solving, we get v = −4x3 + Cx3, and

y2 = −4x3 + Cx3

(We’ll leave in implicit form).

13. yy′′ = (y′)2 With the hint, we need to find a substitution for y′′ (and then leave the equation as a DE
with unknown function p with variable y):

dy

dt
= p(y) ⇒ d2y

dt2
=
dp

dy
· dy
dt

=
dp

dy
p(y)

Now, substitute in the expressions and divide by yp(y):

y
dp

dy
p(y) = (p(y))2 ⇒ dp

dy
=

1

y
p(y) ⇒

∫
1

p
dp =

∫
1

y
dy ⇒ ln |p| = ln |y|+C ⇒ p = Ay

where A is a constant of integration. Now, substitute again with p = y′, and we get:

y′ = Ay ⇒ y = P eAt

where P is another constant of integration.

We can verify our answer as well: y′ = AP eAt, and y′′ = A2P eAt so that

yy′′ = P eAt ·A2P eAt = A2P 2e2At

and this expression is also (y′)2.

14. y′ + 2y = g(t) with y(0) = 0 and g(t) = 1 on 0 ≤ t ≤ 1 and zero elsewhere.

SOLUTION: This is similar to Exercise 33, Section 2.4. In this case, we go ahead and solve starting at
time 0:

y′ + 2y = 1 ⇒ y(t) =
1

2
− 1

2
e−2t

and this is valid for 0 ≤ t ≤ 1. When we hit t = 1, the dynamics change to:

y′ + 2y = 0 ⇒ y(t) = P e−2t

Now we will typically choose the constants so that y is continuous. Therefore, using our previous function,
y(1) = (1− e−2)/2, and our current function: y(1) = P e−2, or

P =
e2 − 1

2

Therefore, the overall solution to the DE would be:

y(t) =

{
(1− e−2t)/2 if 0 ≤ t ≤ 1

((e2 − 1)/2)e−2t if 1 > 1

Just for fun, the direction field and solution curve are plotted in Figure 1.
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Figure 1: Direction field and solution curve for Exercise 14. Note how the solution approaches one equilibrium
until g(t) changes, then it goes to the new equilibrium.

Misc.

1. Construct a linear first order differential equation whose general solution is given by:

(a) y(t) = t− 3 + C
t2

SOLUTION: Construct y′. The idea will be to produce a linear DE. Therefore, we need to construct
y′ and compare it to y:

y′ = 1− 2Ct−3

Add this to some multiple (t’s are allowed) of y to get of the arbitrary constant. In this case,

y′ +
2

t
y = (1− 2Ct−3) + 2− 6

t
+ 2Ct−3 = 3− 6

t

or,
ty′ + 2y = 3t− 6

(b) y(t) = 2 sin(3t) + Ce−2t

SOLUTION: Same idea as before. Try to get y and y′ together in such a way as to cancel out the
arbitrary C:

y′ = 6 cos(3t)− 2Ce−2t

so that: y′ + 2y = 4 sin(3t) + 6 cos(3t).

2. Construct a linear first order DE so that all solutions tend to y = 3 as t→∞.

SOLUTION: One way to think about it is to construct y′ = ay + b, which is also autonomous- In fact,
we are saying that we need a line in the plane, through y = 3 so that the equilibrium is stable- That is
any line through (0, 3) with a negative slope. For example, y′ = −y + 3

3. Suppose we want to construct a population model so that there is a logistic population growth-

(a) That is, there is an environmental carrying capacity of 100. Construct an appropriate (autonomous)
model.

SOLUTION: In the (y, y′) plane, we are looking at an upside down parabola that goes through
y = 0 and y = 100. One model is therefore

y′ = y(100− y)
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(b) Using your model, now assume there is a continuous“harvest” (of k units per time period). How
does that effect the model- In particular, is there a critical value of k over which the population
will be extinct? If so, find it.

SOLUTION: This subtracts k from our population:

y′ = y(100− y)− k

We see that for some value of k, the vertex of the upside parabola is exactly on the y−axis. We
can solve this by completing the square- That is, we should be able to write y′ as a perfect square:

−y2 + 100y + k → −(y2 − 100y + 502) = −(y − 50)2

Therefore, k = 502 = 2500. This is the maximum allowable harvest before the ecosystem collapses.

4. Suppose we have a tank that contains M gallons of water, in which there is Q0 pounds of salt. Liquid is
pouring into the tank at a concentration of r pounds per gallon, and at a rate of γ gallons per minute.
The well mixed solution leaves the tank at a rate of γ gallons per minute.

Write the initial value problem that describes the amount of salt in the tank at time t, and solve:

dQ

dt
= rγ − γ

M
Q, Q(0) = Q0

The solution is:
Q = rM + (Q0 − rM)e−(γ/M)t

5. Referring to the previous problem, if let let the system run infinitely long, how much salt will be in the
tank? Does it depend on Q0? Does this make sense?

Note that the differential equation for Q is autonomous, so we could do a phase plot (line with a negative
slope). Or, we can just take the limit as t→∞ and see that Q→ rM . This does not necessarily depend
on Q0; if Q0 starts at equilibrium, rM , then Q is constant.

It does make sense. The incoming concentration of salt is r pounds per gallon, so we would expect the
long term concentration to be the same, rM/M = r.

6. Modify problem 5 if: M = 100 gallons, r = 2 and the input rate is 2 gallons per minute, and the output
rate is 3 gallons per minute. Solve the initial value problem, if Q0 = 50.

dQ

dt
= 4− 3

100− t
Q Q(0) = 50

This goes from being autonomous to linear. In this case, use an integrating factor,

e
∫
p(t) dt = e3

∫
1

100−t dt = e−3 ln |100−t| = (100 + t)−3 t > 100

Going back to the DE(
Q

(100− t)3

)
= 4(100− t)−3 ⇒ Q = 2(100− t) + C(100− t)3

Continuing, we get:

Q(t) = 2(100− t)− 150

1003
(100− t)3

7. Suppose an object with mass of 1 kg is dropped from some initial height. Given that the force due to
gravity is 9.8 meters per second squared, and assuming a force due to air resistance of 1

2v, find the initial
value problem (and solve it) for the velocity at time t.

The general model is: mv′ = mg − kv. In this case, m = 1, g = 9.8 and k = 1/2. Therefore,

v′ = 9.8− 1

2
v

Which is linear (and autonomous). Since the object is being dropped, the initial velocity is zero.

Solve it:
v(t) = 19.6

(
1− e−(1/2)t

)
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8. Suppose you borrow $10000.00 at an annual interest rate of 5%. If you assume continuous compounding
and continuous payments at a rate of k dollars per month, set up a model for how much you owe at time
t in years. Give an equation you would need to solve if you wanted to pay off the loan in 10 years.

SOLUTION: First, notice that the units of time are mixed- The interest rate is an annual rate, but k
is in dollars per month. We should first decide on what the units of time should be. The answer below
will assume that we are working with time in years, so that the annual payments are 12k dollars per
year (in a continuous fashion).

Therefore, the model is S′ = rS − 12k, where S will be the amount owing, r is the annual interest rate
and k is the rate for the continuous payment (per month). Then using S(0) = S0, we can write the
solution as

S(t) =
12k

r
+

(
S0 −

12k

r

)
ert

Substituting in the values for r and S0, and t = 10, we can solve the equation for k:

0 = 240k + (10000− 240k)e
1
2

Extra: If we go ahead and solve, we get a monthly payment rate of k ≈ $105.90.

9. Show that the IVP xy′ = y − 1, y(0) = 2 has no solution. (Note: Part of the question is to think about
how to show that the IVP has no solution).

SOLUTION: We’ll try to solve it, and see what happens. The DE is separable. Notice that the function
f(x, y) from the E& U theorem is (y − 1)/x, which is not continuous at x = 0...

Continuing as usual: ∫
1

y − 1
dy =

∫
1

x
dx ⇒ ln |y − 1| = ln |x|+ C

Exponentiate both sides to get
y − 1 = Ax ⇒ y = Ax+ 1

There is no choice of A that will satisfy the initial condition,

2 = A · 0 + 1

10. Suppose that a certain population grows at a rate proportional to the square root of the population.
Assume that the population is initially 400 (which is 202), and that one year later, the population is 625
(which is 252). Determine the time in which the population reaches 10000 (which is 1002)

SOLUTION: If P (t) is the population at time t, then the first part of the statement translates to:

dP

dt
= kP 1/2

where k is the constant of proportionality. This is separable (and autonomous), so:∫
P−1/2 dP =

∫
k dt ⇒ P 1/2 = (k/2)t+ C

Given the initial population, we can solve for C, given the second piece of info, we can solve for k:

P (0) = 202 ⇒ 20 = (k/2)(0) + C ⇒ C = 20

and P (1) = 252 gives:
25 = (k/2) + 20 ⇒ k = 10

Therefore, our model is:
P (t) = (5t+ 20)2

Solving for the last part, P (t) = 1002, we have

100 = 5t+ 20 ⇒ t = 16
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11. Consider the sketch below of F (y), and the differential equation y′ = F (y).

(a) Find and classify the equilibrium.

SOLUTION: From the sketch given, y = 0 is asymptotically stable and y = 1 is semistable.

(b) Find intervals (in y) on which y(t) is concave up.

SOLUTION: Examine the intervals y < 0, 0 < y < 1/3, 1/3 < y < 1 and y > 1 separately. The
function y will be concave up when dF/dy and F both have the same sign- This happens when F
is either increasing and positive (which happens nowhere) or decreasing and negative:

0 < y <
1

3
y > 1

(c) Draw a sketch of y on the direction field, paying particular attention to where y is increas-
ing/decreasing and concave up/down. See the figure below.

(d) Find an appropriate polynomial for F (y).

SOLUTION: One example is
y′ = −y(y − 1)2

Figure 2: Figure for Exercise 9.

12. Consider the DE: y dx + (2x − yey) dy = 0. Show that the equation is not exact, but becomes exact if
you assume there is an integrating factor in terms of y alone (Hint: Find the integrating factor first).

SOLUTION: Let µ be the integrating factor, and assume µ is a function of y alone. Then

(µM)y = µ′ ·M + µ ·My = yµ′ + µ

And
(µN)x = 0 ·N + µ · 2

Setting these equal, we have the DE:

yµ′ = µ ⇒
∫

1

µ
dµ =

∫
dy

y

or µ = y. We can verify our answer, since y2 dx+ (2xy − y2ey) dy = 0 should now be exact.
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13. Given the direction field below, find a differential equation that is consistent with it.

SOLUTION: Draw the corresponding figure in the (y, y′) plane first. There we see that y = 0 is unstable
(make it a linear crossing), and y = 2 is stable, y = 4 is unstable. From the figure,

y′ = y(y − 2)(y − 4)

will work.

14. Consider the direction field below, and answer the following questions:

(a) Is the DE possibly of the form y′ = f(t)?

SOLUTION: No. The isoclines would be vertical (consider, for example, a vertical line at t = −3;
the slopes are clearly not equal).

(b) Is the DE possible of the form y′ = f(y)?

SOLUTION: No. The isoclines would be horizontal (for example, look at a horizontal line at y = 1-
Some slopes are zero, others are not).

(c) Is there an equilibrium solution? (If so, state it):

SOLUTION: Yes- At y = 0.

(d) Draw the solution corresponding to y(−1) = 1.

SOLUTION: Just draw a curve consistent with the arrows shown.

15. Evaluate the following integrals:

SOLUTIONS: You should be able to integrate by parts and use partial fractions fairly quickly at this
point. Try checking your answers on Wolfram Alpha (for example, integrate x^3exp(2x) )

Some notes: The first integral should be done using a table, and the last should simplify a lot.∫
x3e2x dx

∫
x

(x− 1)(2− x)
dx e−3

∫
dt/t
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